Get a Half-Life!: Student Worksheet

Name:

\qquad

A decay function is one in which the values decrease by a constant factor, but it is not linear! These functions are often used to model the decay of a radioactive element. The half-life of a substance is the time it takes to reduce its initial effectiveness by one-half.

ต่ท่ำ Group Arrangement

Students work in pairs

Tools

Each pair needs:

- 1 cup of $m \& m$'s
- 1 paper plate or box
- 1 graphing calculator

Procedure

A. Collect the Data

1. Pour $m \& m$'s out and count your beginning sample size (N). This will be your N value when $\mathrm{T}=0$. Enter this value in the table below and put the $m \& m$'s back in the cup.
2. Shake the cup gently and pour the $m \& m$'s out in the box or on the paper plate.
3. Remove all the $m \& m$'s with an " m " showing. (You may eat these $m \& m$'s only!)
4. Count the remaining $m \& m$'s and enter this value of N into your table next to $\mathrm{T}=1$.
5. Put the remaining $m \& m$'s back in the cup.
6. Repeat this process until there are no longer any $m \& m$'s with the letter " m " when you empty your cup.

Trial Number (T)	0	1	2	3	4	5	6	7
\# of remaining $m \& m ' s ~(N) ~$								

B. Use the Calculator

1. Clear out the calculator:

Press [2 $\left.{ }^{\text {nd }}\right][\mathrm{Y}=$]. Enter [4]. Press [ENTER]. This turns off all plots.
Press [Y=], [CLEAR], down arrow and [CLEAR] until all equations are cleared.
Press [STAT], [ENTER] to view tables. To clear Lists, press up arrow to highlight L1, press [CLEAR], [ENTER]. Use arrow keys to highlight any other lists and clear.
2. Enter the data from the table above:

Press [STAT], choose EDIT by pressing [ENTER] and enter values of T in L1 using down arrow keys and [ENTER].
Use right arrow key to move over to L2 and enter the values of N in L 2 .
3. Graph the Data Press [STAT PLOT] ([2 $\left.2^{\text {nd }}\right][\mathrm{Y}=]$), choose 1 by pressing [ENTER].
Highlight: ON
Broken line graph
Xlist: L1
Ylist: L2
Mark: first one
Press [ZOOM], then [9] to set up appropriate window and see graph.
4. Have the calculator determine the best equation for the data.

Linear:

Press [STAT]. Choose CALC[5].
Type in L1, L2 (press [2 $\left.2^{\text {nd }}\right][1][],\left[2^{\text {nd }}\right][2]$ then
[ENTER]). You will see $y=a x+b$ and values for a, b, and r .
Press [Y=], set cursor next to $\mathrm{Y} 1=$, press [VARS][5], arrow over to EQ, press [7], the [GRAPH].

Quadratic:

Press [STAT], choose CALC [6], then type in L1, L2 (like above) and press [ENTER].
Press [Y=]. Set your cursor next to Y2=.
Press [VARS][5], arrow over to EQ, press [7], the [GRAPH]. (Adjust the window here to see more of this graph)

Exponential:

Press [STAT] and choose CALC . Choose A by using the down arrow key until you see "A ExpReg". Press [ENTER].
Type in L1, L2 as before and then [ENTER]. You will see $y=a^{*} b^{\wedge} x \quad\left(y=a b^{x}\right)$ and values for a, b, and r. Press [Y=] and set your cursor next to Y3=. Press [VARS], choose [5], arrow over to EQ, press [7], then [GRAPH].
C. Analyze the Data

1. Which graph most clearly approximates a "curve of best fit" for your data?
2. Why is this called a "half-life"?
3. What is a good estimate for the length of a "half-life" of $m \& m$'s based on your research?

Math Connection

As a result of this activity, students learn to model a real-life situation by collecting data from a few trials, graphing the data, and then drawing a curve of best fit. The student must decide which of the equations best fits his/her data. Sometimes when a student gathers his/her own data, the graph does not make a perfect line or curve.

Assessment

1 Describe the factors that influenced you to choose your "curve of best fit".
2. Explain how each of the three types of equations, linear, quadratic, and exponential, are different.

