\mathcal{N} (ame of $\mathcal{M a t h} S$ kill/Concept: Division Process and Division with Remainders

Prerequisite S kills \mathcal{N} eeded:
1.) Concrete understanding of the division process.
2.) Ability to solve division equations using concrete materials.
3.) Ability to draw solutions for division problems.
4.) $\mathcal{A b i l i t y}$ to use the $\mathcal{F A S} \mathcal{T D R A \mathcal { W }}$ Strategy to find the important information in division story problems, to set up
a division equation, and to a draw solution.
5.) \mathcal{A} bility to skip count.
6.) Mastery of multiplicationfacts/ability to use a times table key or calculator to figure multiplicationfacts.

Learning Objectives:
1.) Solve division story problems/equatons without the use of concrete objects or drawings.

Important Ideas for Implementing Tfis Teacfing Plan:
1.) This teaching plan provides description of instructionalmethods and activities that teach students to use the $\mathcal{F A S} \mathcal{T} \mathcal{D R} \mathcal{W} S$ trategy and the $\mathcal{D R} \mathcal{A} \mathcal{W}$ Strategy to solve both division story problems and division equations. The plan also provides suggestions for how to help students increase their fluency for basic division facts.
2.) The three methods described to teach students how to "answer" divisionequations at the abstract levelcan all be helpfulstrategies for students. Whether you teachone or more than one method is dependent on the needs of your students. The order in whicf they are presented represents a natural progression from drawing solutions for division equations. The first strategy described, "visualizing pictures," can be an effective method for students with strong visual memory skills but may prove troublesome for those students who fiave trouble with visualmemory or visual imagery. The second method, "repeated addition," can be very effective, particularly for students who understand the repeated addition process. Linking division to the multiplication process of repeated addition provides students a solid foundation to practice division at the abstract level. The third method is also an important link to the multiplication process but requires a more sopfisticated understanding of what the multiplicands and the product represent. By explic itly teaching what they represent and associating this to the division process can be veryempowering to students. However, students who have le arning problems or who have limited prior knowledge of multiplication ne ed very explic it instruction regarding these relationsfips.
3.) S tudents who have le arning problems will need ample opportunities to practice solving division problems at the abstract level before they become fluent. For students who understand the concept of division but fiave
difficulty remembering the steps in dividing, having continued access to the steps of the $\mathcal{D R A} \mathcal{A} S$ trategy will allow them to inde pendently solve division equations without continual teacher prompting regarding which step to do next. With multiple opportunities to respond, students'memory of the necessary steps will improve.
4.) Allowstudents to drawsolutions as a "back-up" when needed. Providing students this alternative will allow them to workindependently. Again, multiple independent practice opportunities are the best chance for students to move to abstract levelsuccess!
5.) Fading student use of 6oth the DRAW Strategy and drawings is an important final step, however the fading process should occur only for those division facts they demonstrate ability to solve "abstractly." It is perfectly reasonable and sound instruction to encourage students to use cues for those division problems/facts they have not yet acquired at the abstract level, but to require students not to use cues for those division problems/facts they demonstrate acquisition or mastery of.
6.) Providing daily one-minute timings and charting student progress is an excellent method to increase students, fluency and mastery of division facts (See Instructional Phase 4-Continuously Monitor and Chart Student Performance in this abstract levelinstructional plan).

I. Teach Skill/Concept within $\mathcal{A} u t$ hentic Context

Description:
Meaningfulcontexts will continue to be used to teach the division process in the form of story situations that
have relevance for 9-11 year old students. It is important always to provide story situations that have relevance to your students given the ir age, cultural backgrounds, and interests.

II. Build Me aningful Student Conne ctions

Purpose: to help students build meaningfulconnections between what they knowabout drawing solutions to division problems and finding solutions without the use of drawings.

Materials:
Teacher -

- a visual display of the $\mathcal{F A S}$ TDRAWStrategy.
- a visual display of the written learning objective: "Ulse $\mathcal{F A S} \mathcal{T D R A} \mathcal{A}$ to solve division story problems and division equations witfout drawing pictures." (*Highlight the phrase "without drawing pictures" to make it stand out.)

Description:
1.) £ink to students'prior Knowle dge of using $\mathcal{F A S}$ TDRAW to solve division story problems and to draw solutions to
division equations.

For Example:

You have le arned to solve division story problems using a strategy. Who remembers the name of the strategy that helps us to solve division story problems? (Elic it the response, "FASTDRAW.") Yes, $\mathcal{F A S T \mathcal { D R A }}$ (is a strategy that helps us to solve division story problems. (Hold up a display of the $\mathcal{F A S T D R A} \mathcal{W}$ strategy.) What does the "FAST" in $\mathcal{F A S T D R A W}$ help us to do? (Point to "FAST" and elicit the response, "find the important information in the story problem and set up a division equation.) That'correct, "FAST" helps us find the important information in the story problem and it also helps us to set up a division equation. What does the "DRAW" in "FASTDRAW" help us to do? (Point to "DRAW" and elicit the response, "it helps us solve the division equation by drawing pictures.") Excellent! The "DRAW"in the "FASTDRAW" Strategy helps us to solve division equations by drawing pictures.

2.) I dentify the skill students will le arn

For Example:

For the next few days, we re going to le arn how to use $\mathcal{F A S} \mathcal{T D R A W}$ to solve division story proble ms and division equations without drawing pictures. (Display and point to the written objective: "Ulse $\mathcal{F A S} \mathcal{T} \mathcal{D R A}$ W to solve division story problems and division equations without drawing pictures.") What are we going le arn to do? (Point to the written objective and elic it the response, "use $\mathcal{F A S T \mathcal { A R A W }}$ to solve division story problems and division equations without drawing pictures.") Good.
3.) \underline{Q} rovide rationale / me aning for

For Example:

Learning to solve division problems without drawing pictures will come in handy when you have to divide in a furry. For example, at recess, you and your friends may want to play agame where you fiave to divide up into teams that have the same number of players on each team. Because you only have a limited amount of time for recess, you want to determine fow many players on a team quickly so youcan have as much time to play as possible. Being able to divide without drawing pictures will help you start playing faster.

II I. Provide Explicit Teacher Modeling

Purpose: to provide students a clear teacher model of how to divide (with and without remainders).

Materials:

Teacher -

- a visual display of the $\mathcal{F A S} \mathcal{T} \mathcal{D R A} \mathcal{W}$ Strategy.
- appropriate story problems written so that all students can see it. *Color-coding can be faded at this point in instruction, 6 ut tell students that number pfrases will no longer be color-coded.
- a visual platform to write where all students can see your writing.
- colored markers/pens/chalk

Students.

- $\quad \mathcal{F A S} \mathcal{T D R A} \mathcal{W}$ Strategy Cue sheet.

Description:
A. Breakdown the skill of solving division story problems/equations without the use of concrete objects or drawings.
${ }^{*} \mathcal{T}$ fe same steps described in the representationallevel teaching plan for implementing the $\mathcal{F A S} \mathcal{T} \mathcal{D R} \mathcal{A} \mathcal{W}$ Strategy can be used for implementing the strategy at the abstract level. The only difference is that you will teach students to "answer"the equation ("A"step in $\mathcal{D R} \mathcal{A} \mathcal{W}$) without drawing pictures.
1.) Introduce story problem.
2.) Read the story problem aloud and then have students read it with you.
3.) Find the important information in the story problem and setting up an equation using the steps "FAST"
from the "FASTDRAW"Strategy.
3a. Find what you are solving for.
36. 겨skyourself, what is the important information (circle it).

3c. Set up the equation.
3d. Tie down the sign.

4a. Determine the sign.
46. Read the problem.
$4 c . \underline{A n s}$ wer (without drawing).

- visualize drawings
- use repeated addition

> - use Knowle dge of multiplication facts

$4 d . \underline{W}$ rite the answer.

5.) Model how to solve the story problem by relating the "answer" to the division equation back to the story problem context. 6.) Model how to solve division equations by repeating the steps in\# 4 and \#5 at le ast two or three more times with different division equations.
B. Explicitly describe and model solving division story problems using $\mathcal{F A S} \mathcal{T} \mathcal{D R A W}$ without drawing solutions.
${ }^{*}$ Ulse the same process as described in the representationallevelteaching plan. However, teach students to "answer"the division equation (during the " \mathcal{A} "step of $\mathcal{D R A} \mathcal{W}$) without drawing pictures. Three examples of how you might cue students how to solve the division equation without drawing pictures is provided below. After revie wing each approach, decide which approach will meet the needs of your students best. You may want to teach all three approaches. If youdecide to teach all three approaches, it is suggested that you teach them in the order presented because the skills needed by the student to successfully use each approach increase with each approach. These strategies should be modeled during the " \mathcal{A} " step of $\mathcal{D R A} \mathcal{A}$. Previous to this step, you will have modeled using $\mathcal{F A S} \mathcal{T}$ to find what you are solving for, the important information, and to set up the division equation. You will have also modeled discovering the sign, and reading the problem. These instructional approaches also can be used with division equations that are not a part of a story problem context. Teach solving such equations using the $\mathcal{D R A} \mathcal{W}$ strategy and implement the approaches described during the "A" step.
1.) Model fow to solve division equations by visualizing drawings instead of actually drawing pictures.
1.) Introduce that you will be modeling how to "answer" division problems without drawing pictures.

For Example:

\mathcal{N} ow that we have read the problem, it is time to complete the " \mathcal{A} " step. What does the " \mathcal{A} " in $\mathcal{D R A} \mathcal{W}$ stand for? (Elicit the response, "answer, or draw and check.") That's right. We now need to answer the problem. You have le arned to solve division equations by drawing pictures and that is one thing the " \mathcal{A} " step suggests you do. However, I am going to show you fow to solve the division equation without drawing pictures. You can always draw pictures if you are unable to solve it without them, but we are going to start le arning to solve division problems without drawing pictures.
2.) Model answering the division equation without drawing, cueing students by "thinking aloud" the cognitive process for doing this.

- Model visualizing the dividend.

For Example:
OK, I know I need to separate the dividend into groups based on the divisor. (Point to the dividend and the divisor as you say this.) Hmm, I my dividend is "ten." I need to separate or divide the dividend ten into groups of three. I know I need to se parate "ten" into groups of three because my divisor is "three." (Point to the divisor.) If I drew the dividend "ten"then I would draw ten tallies or tendots. $\mathcal{H} m m, I$ think I can picture that in my head. I'll do that now. (Demonstrate thinking to yourself by putting your fand on your chin and looking up.) OK, I can see ten tallies on a piece of paper. Everybody draw ten tallies on your paper. (Provide students enough time to draw the ir tallies.) What you see on your paper is what I see "in my head." Now, I want you to look at your tallies and then close your eyes. Try to picture those tallies in your head. When you have them pictured in your head, raise your hand. (Provide students time to do this.) OK, now you see in your head what I see. Ifl draw the ten tallies I saw in my head on the board. (Draw ten tallies.)

- Model visualizing the divis or by grouping the tallies into groups based on the divisor.

For Example:

The next thing I would do if I were drawing pictures to solve this problem would be to group the tallies into groups of three by circling the groups. Hmm, I could try doing visualizing this in my head, Gut I think I might have trouble. However, I knowanother way I could group the tallies in my fead. I can visualize tallies in rows of three each until I have a total of ten tallies. I ll do that now. As I am visualizing the groups of tallies, I want you to draw them on your paper. Remember, you need to group you tallies into rows of three untilyou have ten total tallies. Your last row may fave fewer than three tallies because there may be a remainder. (Demonstrate thinking to yourself by putting your hand on your chin and looking up while students draw their groups.) OK, I see one group of three talfies, two groups of three tallies, three groups of three tallies and a fourth group that has only one tally. Therefore my answer is "three with a remainder of one." What did youdraw? (Elicit several student responses and then draw what you "visualized.") This is what I visualized in my head (Point to the grouped talfies you just drew.) What is my solution? (Elicit the response, "three with a remainder of one.") That's right. The answer is three with a remainder of one.

- Review the visualization process to re-emphasize the cognitive cues used to solve the division problem.

For Example:

\mathcal{N} ow that I have solved the division problem without drawings, let's review what I did. When completing the " \mathcal{A} " step in $\mathcal{D R} \mathcal{A} \mathcal{W}$, I can answer the equation 6 y visualizing the pictures I would draw if I were actually drawing pictures to find the answer. First, I visualize drawing tallies to represent
the dividend. What did I visualize first? (Elicit the response, "the dividend.") How many tallies did I visualize in my fead? (Elicit the response, "ten.") Yes, I visulized ten tallies because my dividend was ten. (Point to the dividend and then point to the tentallies youdrew to represent what you "saw in your head.") Let's practice picturing the ten tallies in our heads. Everybodylook at the ir paper and then close your eyes. Try seeing what is on your paper in your head. (Provide students time to do this.) Raise your hand when you see the ten tallies in your head. Great job practicing how to make pictures in your head that represent pictures we draw on paper. Now, what is the next thing I did to solve this equation. (Elic it the response, "put the tallies in groups of three in your head.") Yes, I knew I needed to group the tallies into groups of three because the divisor is "three." Let's practice picturing the groups of three talfies in our heads. Everybody look at the groups youdrew on your paper and then close your eyes. Try seeing what is on your paper in your head. (Provide students time to do this.) Raise your hand when you see the groups of three tallies in your head. (Provide students time to do this.) How many groups of three tallies do you see? (Elicit the response, "three.") Yes, there are three groups. Any tallies left over? (Elicit the response, "yes, one tally.") Great job visualizing division in your heads! So, what is our answer? (Elic it the response, "three with a remainder of one.") Excellent!
3.) Repeat this process at least three more times with a variety of division equations.
2.) Model how to use repeated addition to solve the division equation.
1.) Link to student prior knowledge of and experiences with repeated addition.

For Example:

Let me show you a problem you alre ady know how to solve. (Display a repeated addition problem such as "5
$+5+5=$ \qquad .") What is the answer to this problem/number sentence? (Elicit the appropriate response.) That's right, the solution/sum is "fifteen." How did youknowthis? (Elicit the response, "by adding five plus five plus five.") Good. Let's do this together by skip counting. (Point to each five as you and your students skip count. *Relate to grouped drawings of five tallies under each'5'if you think additionalcue ing is needed for skip counting.) Great!

For Example:
$5+5+5=15$
"five" "ten" "fifteen"
2.) Model how to use skip counting to solve division equations by writing the divisor beside the problem in repeated addition fasfion and then skip counting.

For Example:

S kip counting, when we add the same number several times, can help us do division without drawing pictures. Let me show you how. (Display a division equation with the dividend and divisor color-coded to help students distinguish them.)
$5 \longdiv { 1 5 }$ or $15 \div 5$
\mathcal{N} ow, in order to solve this division equation, I can use skip counting. What is my dividend or total? (Elicit the response, "15.") Good. What is my divisor? (Elicit the response, "5.") Great! I need to find out how many groups of five can be made from fifteen. (Point to the divisor and then the dividend as you say this.) $\mathcal{H} m \mathrm{~m}$, how could I use skip counting to do this? Well, I know I have groups of five because "five" is my divisor. I could write a five over here to represent one group of five. (Write the number five to the right side of the equation or below the equation.)
$515 \quad 5 \quad 15 \div 5$

5

OK, that gives me one group of five. "Five" is less than "fifteen," so I know I need at least one more group of "five." I ll write a second five. (Write another five next to the one you just wrote.) OK, I have two groups of five.
For Example:
$\begin{array}{ll}515 & 5 \quad 5\end{array}$
$15 \div 5$
55

Let me skip count to see how many I have. (Point to each " 5 " as you skip count.) Well, now I have a total of "ten" with my two groups of five. "Ten" is still less than "fifteen"so I can add another group of "five". (Write another "5.") I tf skip count again. (Point to each five as you skip count.)

```
"five" "ten" "fifteen"
```

```
"five" "ten" "fifteen"
```

\mathcal{N} ow I have fifteen total. Three groups of five equal fifteen. Since I have three groups of five, (Point to each " 5 " and count, "one, two, three. Circlingeach five might be a helpfulcue to some students since it replicates the process they used for drawing except nownumbers represent the tallies/dots they once drew.) and that equals fifteen, then my quotient or answer to this division equation is "three." *For students with visual and/or spatial orientation problems, teaching them to drawseveralcircles first or boxes first and then writing the number inside the circle canbe a helpfulcue. This technique can also help students with estimation because they can predict the number of circles or boxes they need to draw first and thencheck how close they were when they complete the skip counting process.

I can complete the last step of the $\mathcal{D R A} \mathcal{A}$ strategy, "W" by writing my quotient or answer in the appropriate space. (Write " 3 "in the appropriate place. Color-code " 3 "to distinguish it as the "quotient.")

3
$5 \longdiv { 1 5 } \quad 1 5 \div 5 = 3$
3.) Review the dividend, divisor and quotient by reviewing what each means and relate them to the repeated addition process.

For Example:

\mathcal{N} ow that we have found our answer. Let's revie wour problem and what each number means. Let's read the problem first. (Re ad the problem and its answer aloud with the students, pointing to each number and symbolas you read it.) Great job! Nowlet's review what each number and symbolmeans. (Point to the dividend.) What does this number represent? (Elicit the response, "the total.") Good. The number fifteen represents the total. What do we call the total in a division problem? (Elicit the response, "dividend.") Yes, we call the total the dividend. (Point to the word card displayed in the room reading "dividend."). OK, what does this symbolmean? (Elicit the response, "divide." Point to the "dividend"word card displayed in the room as needed for cueing or for re-emphasis of the written word.) That's right, it means "divide." What does the word divide mean? (Elic it the response, "to separate into equalgroups.") Great job! Divide means we separate the totalinto equalgroups. Now, what does this number represent? (Elicit the response, the number of things in each group.) That's right, it represents the number of things we have in
each group. What is the name for the number of things in each group when we are solving division problems? (Elicit the response, "divisor." Point to the "divisor" word card displayed in the room as needed for cueing or for re-emphasis of the written word.) Right. We call the number representing how many in each group, the divisor. Alright, I'm going to read these parts of the problem again, and I want you to tell me what it all means. (Point to each part of the problem and read, "fifteen divided by five.") What does "fifteen divided by five" mean? (Elicit the response, "it means we are separating fifteen'into equalgroups of five.") Excellent thinking! Now, the last number we haven't identified is the number "three." (Point to the number "3.") What does the number "three" represent. (Elicit the response, "the number of groups of five we can separate fifteen into.") That's right, "three" represents the number of groups of five we can separate "fifteen"into. What is the "division" name for the three, or the number of groups? (Elicit the response, "quotient." Point to the "divisor" word card displayed in the room as needed for cueing or for re. emphasis of the written word.) Yes, we call the number representing the groups the dividend can be separated into the "quotient." The number "three" is the "quotient."
4.) Repeat this process with at least three more examples. *The same process can be used for division problems that have remainders. When students get to the point where adding the divisor one more time results in a sumgreater than the divisor, then model to students how to count on from the previous sum until they reach the value of the dividend. That number becomes the remainder.
3.) Model how to use knowledge of multiplication facts to solve division equations.
1.) Link to student Knowle dge of and experiences with multiplication facts.

For Example:

Youknow how to use skip counting to solve division problems. Skip counting is one way to multiply. You have already learned a lot about multiplication and multiplication facts/times tables. Like skip counting, we can use what we know about multiplication facts to solve division equations. Let's review some multiplication facts. (Display several multiplication facts on the chalk-6oard, dry-erase board, or overthead projector.) Alright, what does "4 times 2"equal? (Point to the multiplicationfact and elicit the response, "e ight." Continue this process for two more facts.) Great!
2.) Model the relationsfip of the product and the multiplicands in multiplication fact.

We know the answer to each of these multiplication facts, but what do these problems really mean? Well, Let's take a lookat one problem and see. I'mgoing to read this problem. (Read "4 $x 2$.") Now, in any math problem, the numbers and symbols mean something. This is true for multiplication problems as well. I can read this problem by saying "four times two equals eight." Another way to say it is "four groups of two is eight." (Point to each number and symbol as yousay this, then rewrite the problem this way underneath the originalfact.) I'd like for you to read this problem both ways with me. (Read the problem both "ways" with your students, pointing to each written representation of the problem.) Ok, let's lookcloser at this problem. (What does the number"four"mean? (Point to the number" " "and elicit the response, "it means there are four groups." Point to "four groups" if cueing is needed.) Yes, the number "four"means "four groups." OK, what does the "two"mean? (Point to the two and elicit the response, "there are two ineach group.") Good. The two represents two things in each of the four groups. So, what does the "e igft" represent? (Point to the " 8 "and elicit the response, "the total.") Yes. Yes, eight is the total. Therefore, when we have four groups and two are in each group, we have a total of eight.
3.) Model the relationsfip of the product and multiplicands to the dividend, divisor, and quotient in a division problem.

- Display both a division problem and its associated multiplicationfact and say what each problem means.

For Example:

5
$x \underline{4}$
20
$\mathcal{H e r e}$ we have two equations. (Point to the division equation.) What kind of equation is this one? (Elic it the response, "division.") That's correct. This is a division problem. I know it is a division problem because this sign represents/means division. (Point to the division symbol.) What kind of equation is this? (Elicit the response, "multiplication.") Yes, this is a multiplication problem. I Know this is a multiplication problem because this sign represents/means "multiplication." (Point to the multiplication symbol) I'm going to write some words next to the numbers in eachequation to make them more me aningful. (Write words/phrases next to each number in the problems that provide a meaningful context.)

5 groups
4 children $\sqrt{20}$ totalchildren $\quad 5$ groups $x \underline{4}$ children
$\mathcal{A l t h o u g h}$ these are two different equations, division and multiplication, what we know about multiplication can help us solve division equations. Let's read eachequation to find out what they mean. Let's read the division equation first. (Point to the division equation and read it aloud with your students, "twenty divided by four equals five.") Now, I'mgoing to read the same problembut use slightly different words. A total of twenty when separated into groups of four becomes five groups. (Point to the division equation and each number/symbol as you say the phrase and the words that correspond to each number/symbol.) I ll write this on the board. (Write the phrase on the board or display an already written phrase below the division equation. Color-code the words that correspond to each number/symbol. Point out to students how the colors in the words and the numbers show the ir relationsfip.).

For Example:

$$
4 \text { children } \begin{gathered}
5 \text { groups } \\
\sqrt{20} \text { totalchildren }
\end{gathered}
$$

"A total of twenty children when separated into groups of four childreneach has five groups."

OK, what does this division problem mean? (Point to the phrase on the board and elicit the appropriate response.) Great! The "twenty"is the total, the division symbolmeans to "divide" or to "separate the total," the "four" represents the number of things in eachgroup when you divide or separate the total, and the "five" represents the number of groups of four that the totalcan be divided or separated into. (Point to each number and the words in the phrase that corresponds to it.) Let's review what each number and symbolmeans. (Review what each number and symbolmeans: e.g. What does the twenty represent? What does the division symbolrepresent?..)

We know what the division equation means and what each number and symbolme ans, nowle t's do the same for the multiplication problem. Let's read the multiplication equation. (Point to the multiplication equation and read it aloud with your students, "five times four equals twenty.") Good. \mathcal{N} ow, I'm going to read the problem again but I'mgoing to use slightly different words, just like I did with the division equation. Five groups of four equals a total of twenty. (Point to the multiplication equation and each number/symbol as you say the phrase and the words that correspond to each number/symbol.) I tl write this on the board. (Write the phrase on the board or display an already written phrase below the multiplication equation. Color-code the words that correspond to each number/symbol. Point out to students how the colors in the words and the numbers show the ir relationsfip.).

For Example:

> 5 groups
> $\times \underline{5}$ children
> 25 totalchildren
"Five groups of four equals a total of twenty."

OK, what does this multiplication problem mean? (Point to the phrase on the board and elicit the appropriate response.) Great!The "five" is the number of groups, the multiplication symbol means to "of"," the "four" represents the number of things in each group, and the "twenty" represents the total number of things in the groups altogether. (Point to each number and the words in the phrase that corresponds to it.) Let's review what each number and symbol means. (Review what each number and symbolmeans:e.g. What does the twenty represent? What does the division symbolrepresent?..)
4.) Explicitly model the relationship of the dividend in the division equation and the product in the multiplication fact.

For Example:

(Point to the dividend "20.") What does this number represent? (Elicit the response, "the total.") Yes, twenty is the total. What is the name for the totalin a division problem? (Elicit the response, "dividend.") Good. (Point to the product, "20.") What does this number represent in this multiplication problem? (Elicit the response, "the total.") Yes, "twenty" in this problem represents the totalas well. So, what does the "twenty" in this division problem (Point to the " 20 " in the division equation.) have in common with the "twenty" in the multiplication problem? (Point to the " 20 in the multiplication problem) (Elicit the response, "they both are the total.") That's right, each is the totalin the ir respective problems. So, the dividend in a division problem and the product/answer in multiplication problem me an the same thing. They represent the total.
5.) Explicitly model the relationship of the divisor to the multiplicand that represents "howmany in each group - "4."

For Example:
\mathcal{N} ow that we know the "twenty" in both the division equation and the "twenty" in the multiplication problem mean the same thing, let's lookat the other numbers in the two problems and see fow they relate to eachother. Let's examine the number " 4 "in each problem. (Point to the " 4 "in the division problem.) What does this number represent? (Elicit the response, "the number of things in each group.") Yes, the number "four"in this division problem represents the number of things that will be in each group as we divide/separate the divisor, "twenty," into equalgroups. Nowlet's look at the number " 4 "in the multiplication problem. What does this number represent? (Elicit the response, "the number of things in eachgroup.) That's right, the "four"in this multiplication problem represents the number of things in each group.
6.) Explicitly model the relationsfip of the quotient to the multiplicand that represents number of groups "5."

For Example:

We know the "four"in both the division problem and the multiplication problem represents the number of things in each group. Nowlet's examine the number "5"in eacf problem. (Point to the " 5 "in the division problem.) What does this number represent? (Elic it the response, "the number of groups.") Yes, the number "five" in this division problem represents the number of equalgroups that the dividend "twenty" can be separated into. What do we call the number that represents the groups the dividend can be separated into? (Elicit the response, "the quotient.") Yes, the number "five" is our quotient and it represents the number of equalgroups the dividend can be separated into. How many are in each of the five groups? (Elic it the response, "four." Point to the divisor for additionalcueing.) Good. \mathcal{N} (ow let's look at the number "5" in the multiplication problem. What does this number represent? (Elicit the response, "the number of groups.") That's right, the "five"in this multiplication problemrepresents the number of groups. The number five in the multiplication problem represents the same thing that the five in the division problem represent. (Point to "5"in both problems.) What do they bothrepresent? (Elicit the response, "the number of groups.") That's right, the "quotient"in a division problem (Point to the " 5 "in the division proble $m>$) and the first number in a multiplication problem (Point to the " 5 " in the multiplication problem.) both represent the number of groups. How many are in each group in the multiplication problem? (Elicit the response, "four." Point to the "4"in the multiplication problem for additional cueing.)
7.) Model the relationship of the divisor and quotient in a division problem to the two multiplicands in multiplication problem.

For Example:

We now know what each number in the division problem and the multiplication problem represent, and we also Know that each number in a division problemmeans fas a "brother"or "sister"in a multiplication problem. I call them"brothers" and"sisters"because they are related. Let's reviewthese relationsfips.
(Review the similarities of the numbers in each problem-e.g. dividend and product; divisor and second multiplicand; quotient and first multiplicand.) Now, I want us to look at each problem again and compare them. I will re-write them and then I want you to look at them and tell me what you notice. (Re-write the same two equations.)

5 groups
4 children $\sqrt{20}$ totalchildren
5 groups
x $\underline{4}$ children
25 totalchildren

What do you notice? (Elic it appropriate responses -e.g. "they have the same numbers;" the fives have the same color, the fours have the same color, the twenties have the same colors.) Excellent observations! I am going to write a symbolbetween the "four" and the "five" in the division problem that will actually turn it into a multiplication problem. When I do this, you will see fowmultiplication problems and division problems are related. (Write the " x "symbol between the " 4 " and the "5.")

$x \quad 5$ groups	
4 children	
20 totalchildren	
	$x \leq$ groups
	20 totaldren

\mathcal{N} ow, examine the two problems again and tell me what you see that is similar. (Provided students time to examine the problems.) What do you see that is similar? (Elicit appropriate responses, "if youmultiply five times four in the division problem, the answer is twenty;" the dividend is the answer to five times four.") Great observations guys! When I look at this problem, I see that if I multiply the quotient, "five" (Point to the quotient.) by the divisor, "four," thenthe answer or product is "twenty." I Knowthat this is true because when I look at the multiplication problem, I cansee that "five times four equals twenty." (Point to the multiplication problem as you say this.) I can read my newly made "multiplication problem". (Point to the quotient, divisor, and dividend and read it as a multiplication sentence: "Five groups of four equals twenty.") I can also read my "original" multiplication problem and see that the same thing is true for it. (Point to each number of the multiplication problem and read it: "Five groups of four equals twenty.") \mathcal{N} (ow that we know how to make a "multiplication"problem out of a division problem, I can really see why the numbers in these two different types of problems mean similar things. (Revieweach number and what it means for each type problem, re-stating how the corresponding number in the other type problem means the same thing.)
8.) Model using Knowledge of multiplication facts to solve division equations.

For Example:

\mathcal{N} Now that we know how division problems and multiplication problems are similar, I am going to show you how to use your knowle dge of multiplication to solve division problems. (Display a division problem that represents a multiplication fact and the corresponding multiplication fact.)

? groups

5 children $\sqrt{25}$ totalchildren

$$
\begin{aligned}
& 5 \text { groups } \\
& \times 5 \text { children } \\
& 25 \text { totalchildren }
\end{aligned}
$$

9.) Modelcomparing the two equations and finding what is similar.

For Example:

$\mathcal{H e r e}$ I have a division problem and a multiplication fact that can help me solve the division problem. (Point to both problems. OK, I knowone is a division problem and one is a multiplication problem. (Point to each problem and say them aloud - "twenty-five divided by five equals;" "five times five equals twe nty-five.") Even though one is a division problem and one is a multiplication problem, I now know from what we have Learned that there are things in common between the two types of problems. $\mathcal{H} m m$, what can I find that is common between these two problems? Well, the two totals are the same. (Point to the dividend and the product.) Each total is "twenty-five." Now, both division and multiplication problems involve groups and objects in those groups. I wonder how this knowledge can help me. Well, I can see that the number in each problem that represents the number of things in each group is the same. (Point to the " 5 "in each problem that represents the divisor and second multiplicand.) I know that in the division problem, "twenty-five" is to be divided into equalgroups that have five things in each group. I know this because my dividend or total is "twenty-five and my divisor is "five." (Point to the division problem and then point to the dividend and divisor as you say this.) The divisor, "five," tells me fowmany things should be in each group. In the multiplication problem, I know this number five also means the number of things in each group. (Point to the "5" that represents the number in each group.)
10.) Modelusing the fact " 5×5 " to solve the division equation.

For Example:

OK, how can I use what is the same in this division and multiplication problem to solve the division problem? Well, we already know fow to write in a multiplication sign betwe en the divisor and the quotient of a division problem. (Showstudents the previous problem where you modeled this.) $\mathcal{B y}$ writing multiplying the divis or and the quotient, we found out that the answer/product was the dividend. Let me write in a multiplication sign fere. (Write a multiplication sign in the appropriate place.
χ
? groups
5 children $\sqrt{2} 5$ totalchildren

> 5 groups $\times \underline{5}$ children
> 25 totalchildren

In this division problem, I don't know the quotient. (Point to where the quotient will be written.) That is what I need to solve for. However, I can still use what I knowabout multiplication to help me solve this problem. I already know from the multiplication fact that I have written over here that "five times five equals twenty-five." (Point to the corresponding multiplication problem, emphasizing the first multiplicand) Because I know this, I now know that if I write five for my quotient, then I will have the solution to my division problem. (Write "5"for the quotient.)
$x \quad 5$ groups
5 children 25 totalchildren 5 groups
$x \underline{5}$ children
25 totalchildren
\mathcal{H} ow did I know the quotient should be five? (Elicit the response, "because five times five equals twenty. five; Gecause the multiplication problem told you so.") That's right. I used the multiplication fact to help me solve the division equation.
11.) Review why the multiplication fact can help solve the division problem

For Example:

\mathcal{N} ow that we have solved this division equation by using its corresponding multiplication fact, let's review why we can use multiplication to solve division problems. We cando this by remembering what the numbers in each type of problem really mean. (*Review with students what each number in each type problem represents and how the corresponding numbers in each type problem represent the same thing. Tlse the written language to emphasize these re(ationships)
12.) Repeat this process with at least three more examples. Ulse multiplication facts that all students have mastered.

Purpose: to provide students the opportunity to build the ir initial understanding of how to divide without concrete materials or drawings, and to provide you the opportunity to evaluate your students'level of understanding after you have initially modeled this skill.

Materials:
*De pendent on the skill you are Scaffolding Instruction for (See the materials listed for the specific skill you want to scaffold under Explicit Teacher Modeling).

Description:
*Scaffolding at the abstract level of instruction should occur using the same process as scaffolding instruction at the concrete and representational/drawing levels of instruction (See the description of Scaffolding Instruction in the Concrete Level Instructional Plan for this math concept.). The steps listed for each skill during Explicit Teacher Modeling should be used as structure for scaffolding your instruction.
A. Scaffold instruction using a figh levelof teacher direction/support. (Dependent on the needs of your students, you may want to continue to associate drawings to the abstract levelrounding process during this phase of scaffolding. Move to the next phase of scaffolding only when students demonstrate understanding and ability to respond accurate (y to your prompts.)
\mathcal{B}. Scaffold instruction using a medium levelof teacher direction/support. (If you associated drawings with the abstract process for rounding while scaffolding using a fighlevelof teacher direction/support, thendo not include drawings during this phase of scaffolding. Move to the next phase of scaffolding only when students demonstrate understanding and ability to respond accurately to your prompts.)
C. Scaffold instruction using a low levelof teacher direction/support. (S tudents sfould actually divide as you prompt them during this phase of Scaffolding Instruction.. Move students to inde pendent practice of the skill only after they demonstrate the ability to perform the skill with limited prompting from you.)

Instructional Phase 2: Facilitate Acquisition to Mastery - Student Practice ${ }^{*}$ The student practice strategies described below can be used for both skills taught during initial acquisition through $\mathcal{T e}$ acher Directed Instruction. A detailed description for providing practice for one of the skills is provided below: Explicitly relate the place value of digits in one, two, and three digit numbers to where concrete materials are grouped on the place value mat.

1. Receptive/Recognition Level

Purpose: to provide students multiple opportunities to choose accurate solutions to division problems whengive severalchoices.

Learning Objective 1: Solve division story problems/equations without the use of concrete objects or drawings - Solving division equations.
A. Self-Correcting Materials - Clothespin Division (adaptedfrom Mercer é Mercer, 1998)

Materials:

Teacher -

- develop a variety of Clothespin Division Cards - Eacficard is separated into eight regions on the front and back. On the front of the card, a division equation is written in eachregion. Onthe backof the card, one of eigft different symbols is writtenineach region (e.g.* • • • *). Cards canreflectcertain division fact families, especially problematic division problems, or random division problems/facts dependent on the needs of your students. Eacficard is numbered, " $1,2,3, \ldots$ ")
- aset of eight clothespins for each Clothespin Division Card. Each clothespinfas the correct answer of one division problem on one side and the corresponding symbolof the division equation it ans wers on the other side.
- ziplock bags to store each card and set of clothespins. *Each bag can be numbered by card number to store corresponding clothespins while cards are kept altogether in a separate bag or otfier container.
- Answer Key that lists the problems and answersfor eacf Clothespin Division Card.

Students.

- Clothespin Division Cards and corresponding clothespins.
- aresponsesfieet (sheet of paper)
- ascratcfisheet of paper for working out problems if ne eded
- pencil

Description:
Activity:
Students work with square or rectangular shaped cards divided into eight regions. On the front side of the card, division problems are written in each region. On the backof each card are eight different symbols with one symbol written in eacfregion. Eacf card is numbered at in the center or in one of the corners in an alternate color. Students right the number of each card they respond to on the ir response sheets. Each Clothe spin Division Card has a set of eight clothespins. Every clothespinhas the correct answer to one division equation written on one side and the corresponding symbolfrom the back of the card written on the other side of the clothespin. Students choose the clothespins that "answer"each divisionequation and clip them to the card in the appropriate region. When students have answered all of the equations, they flip the
card over. If the symbol on a clothespin matches the symbol on the back of each card, then the student Knows they solved the equation correctly. As students finish a card and check their answers, they record the number they got correct on the ir response sheet next to the card number. The teacher circulates the room and monitors students as they work, providing positive reinforcement, providing specific corrective feedback, and answering questions as appropriate. Students canexchange cards as they finish. The teacher evaluates student performance by reviewing their response sheets.

Ide a for Monitoring Student Performance

You and your students cankeep track of how they do with each numbered card by writing the number correct on an individual chart that lists the different card numbers (e.g.graph paper can be used where each column represents a different card and the card's number is written at the top or botom of a column). Each row represents days the student practices with the Division Clothesline Cards. Dates can be written to indicate the day of practice. Each time a student responds to a card, he/she (or you) can record the total number correct on their chart for each card they respond to. When the student gets eight correct three days in a row, they can put a star next the number that represents that card. Students can "visualize"their progress and this process can be an efficient way for you to quickly monitor student progress, particularly if each "card number" represents particular division facts/problems. You can quickly see which fact families students are becoming proficient with at the receptive/recognition level.

Self-correcting Materials Steps:
1.) Introduce self-correction material.
2.) Distribute materials.
3.) Provide directions for self-correcting material, what you will do, what students will do, and reinforce any Gehavioral expectations for the activity.
4.) Provide time for students to askquestions.
5.) Model responding/performing skill within context of the self-correcting material.
6.) Modelhowstudents cankeep check their responses.
7.) Have students practice one time so they can apply what you have modeled. Provide specific
feedback/answer any additional questions as needed.
8.) Monitor students as they work.
9.) Provide ample amounts of positive reinforcement as students play.
10.) Provide specific corrective feedback/re-modelskill as needed.
11.) Encourage students to review the ir individual response sheets.
13.) Review individual student performance record sheets.
II. Expressive Level

Purpose: to provide students multiple practice opportunities to solve division problems in a motivating format.

Learning Objective 1: Solve division story problems/equations without the use of concrete objects or drawings - Solving division equations.

Instructional Game - Division Basketball

Materials:
Teacher-

- sets of cards that represent division problems with increasing levels of difficulty. Lay up cards fave the easiest problems, 10 foot jump shot cards have more difficult problems, and 3 point shot cards are the most difficult. The front side of each card has the type of shot written on it, the problem the offensive player answers, and the problem(s) the defensive player answers to "block." The answer to each problem is written on the 6ack of each card. Two "block" problems are written for "lay up"cards. One "block" problem is written for "10 foot jump shots." $\mathcal{N o}$ "block" problems are written on "3 point shot"cards. (*One set of problems for each type of shot can be made on sheets of paper so that problems and answers for each card can be cut out to fit the size of a 4×5 note-card. The master sheets can then be copied to make as many sets as needed. Problems and answers are glued to the front and back of a each note-card and a letter is written (a-z). Note-cards can be laminated to protect them.

For Example:

Front of Lay-Ulp Card

Back of Lay-up Card

- response sheets that have three columns labeled "Lay-Ulp," "10 foot jump shot," and "3 point shot."
- drawing of basketball court on chalkboard/dry-erase board or poster board posted in front of room.

Students.

- three decks of Division Basketball cards (Lay-Ulp, 10 foot jump shot, 3 point shot).
- response sfieet
- scratch piece of paper for solving problems
- pencil

Activity:
Students work in pairs or small groups. Each pair or small group has a drawing of a basketball court on tag board (alarger basketball court could be drawn on the chalkboard/dry-erase board or on a poster-board and placed in the front of the room as an alternative to providing a smaller version for each student pair). Additionally, each student pair or small group has three sets of cards. Each set represents division proble ms that increase in difficulty (See description of cards under "Materials.") The easiest set of cards are for "Iayups." The next most difficult set of cards are "10 foot" jump shots. The most difficult set of cards are " 3 point shots." Students take turns pulling on card from one of the three sets of cards. The student who "has the Gall" chooses whether to shoot a "lay up" for one point, a "10 foot jump shot"for two points, or a " 3 point shot" for three points. The player "shoots" by answering the division problem on the card. The player receives the appropriate number of points if they answer the problem correctly. The player or team on defense has the opportunity to "block" a lay-up or 10 foot jump shot by responding to the "block" division problem(s) also on the front of side of those cards. If the "defense"answers the "block" division problem(s) correctly, then the offensive player does not receive points for their shot. If a player chooses to answer a" 3 point shot"card, the defense cannot 6lock that shot. After both the player on offense and the player on defense answer the ir problems, they check their answers by turning the card over. Each player records the letter of the card they answered under the column labeled "lay-up," "10 foot jump shot," or "3 point shot" along with the points they made (6oth offensive shots and 6lockattempts). Teacher monitors students providing positive reinforcement, specific corrective feedback and answering questions as appropriate. $\mathcal{T} e a c h e r$ reviews individual student response sheets to evaluate student performance.

Instructional Game S teps:
1.) Introduce game.
2.) Distribute materials.
3.) Provide directions for game, what you will do, what students will do, and reinforce any be favioral expectations for the game.
4.) Provide time for students to ask questions.
5.) Modelfow to respond to the card prompts.
6.) Provide time for students to askquestions about how to respond.
7.) Modelfowstudents cankeeptrackof the ir responses.
8.) Play one practice round so students can apply what you have modeled. Provide specific feedback/answer any additional questions as needed.
9.) Monitor students as they practice by circulating the room, providing ample amounts of positive reinforcement as students play, providing specific corrective feedbacklre-modeling skill as ne eded.
11.) Play game.
12.) Encourage students to review the ir individual response sheets.
13.) Review individual student response sheets to determine levelof understanding/proficiency and to determine whether additional modeling from you.

Instructional Phase 3: Evaluation of Student Learning/Performance (Initial Acquisition through
Mastery/Maintenance)

1. Continuously Monitor \& Chart Student Performance

Purpose: to provide you with continuous data for evaluating student le arning and whether your instruction is
effective. It also provides students a visual way to "see"their learning.

Materials:
Teacher -

- appropriate prompts if they will be oral prompts
- appropriate visualcues when prompting orally

Student -

- appropriate response sheet/curriculum slice/probe
- graph/chart

Description:

Steps for Conducting Continuous Monitoring and Charting of Student Performance:
1.) Choose whether students should be evaluated at the receptive/recognition levelor the expressive level.
2.) Choose an appropriate criteria to indicate mastery.
3.) Provide appropriate number of prompts in an appropriate format (receptive/recognition or expressive) so students can respond.

- At the abstract levelof understanding, the most efficient format for a curriculum slice/probe is written (e.g. student responds in writing to written prompts).
4.) Distribute to students the curriculum slice/probe/response sheet/concrete materials.
5.) Give directions.
6.) Conduct evaluation.
7.) Count corrects and incorrects/mistakes (you and/or students cando this depending on the type of curriculum slice/probe used-see step \#3).
8.) You and/or students plot their scores on a suitable graph/chart. A goal line should be visible on each students, graph/chart that represents the proficiency (near \% 100 accuracy with two or fewer incorrects/mistakes) and a rate (\# of corrects per minute) that will allow them to be successful when using that skill to solve real-life problems and when using the skill for higher level mathematics that require use of that skill.
9.) Discuss with children their progress as it relates to the goal line and their previous performance. Prompt them to self-evaluate.
10.) Evaluate whether student(s) is ready to move to the next level of understanding or has mastered the skill at the abstract level using the following guide:

Abstract Level: demonstrates near \%100 accuracy (two or fewer incorrects/mistakes) and a rate (\# of corrects per minute) that will allow them to be successful when using that skill to solve real-life problems and when using the skill for higher levelmathematics that require use of that skill.
11.) Determine whether you need to alter or modify your instruction based on student performance.
2. Additional Assessment Activity Appropriate For $\mathcal{T h}$ is Math Skill/Concept

Purpose: to assess where student understanding of the rounding process is "breaking down."

Flexible Math Interview/C-R.A Assessment

Materials:
Teacher -

- appropriate concrete materials for dividing (See Concrete LevelInstructional Plan-Explicit Teacher Mode (ing.).
- appropriate examples for assessment (division problems)
- papertorecordnotes.

Description:
$\mathcal{H a v e}$ students solve division problems using concrete materials, by drawing, and without concrete materials or drawings. Askstudents to explain the ir answers as they respond. Note where in the division process students "breakdown;" both at what levelthey begin having difficulty and at what point within that level of understanding they demonstrate misunderstanding/non-understanding. Based on where students demonstrate difficulty, provide explicit teacher modeling at that levelof understanding and for the particular sub-skill they are having difficulty with. As the student demonstrates understanding, scaffold your instruction until they are ready to practice the skill independently. As students demonstrate mastery of the skill at that levelof understanding,
then provide explicit teacher modeling at the next levelof understanding. Follow this process until students demonstrate mastery at the abstract level.

Key Ideas

1.) Students who demonstrate difficulty at the abstract levelof understanding may have "gaps"in their understanding that can be traced back to their representational/drawing levelof understanding or even their concrete level of understanding. By providing additional teacher modeling at the level their "gap"in understanding began and then moving them from a concrete-to-representational-to-abstract levelof understanding, you can assist students to become successful at the abstract levelof understanding.
2.) Sometimes students demonstrate difficulty at the abstract level because they did not receive enough practice opportunities at the concrete and representational/drawing levels. The drawing levelis a very important step for these students. Some students need continued practice drawing solutions and associating the ir drawings to the abstract symbols and the mental processes necessary to perform at the abstract level.
3.) Some students understand the concept, but have difficulty remembering the steps involved to perform the skill at the abstract level. Providing students with cues they can refer to as they practice at the representational/drawing and abstract levels of instruction is very he (pful(e.g. DRAPS Strategy). Such cueing provides them the independence to practice. Multiple practice opportunities translate into repetition, and repetitionenhances memory. The use of instructionalgames and self-correcting materials are an excellent way to provide students with multiple opportunities to solve division problems.
4.) $\mathcal{H e l p i n g}$ your students build their fluency for solving division facts can also increase the ir abstract level problem-solving efficiency. Providing daily one-minute timings and charting student performance is an effective way to do this. It is important to communicate with students what their "learning pictures" (charts) me an and to set short-term achievable goals. Seeing "what"they are striving for and seeing their progress as they move toward a goal is very motivating for children! (See the description of the instructional strategy"Continuous Monitoring and Charting S tudent Performance" for more information. This description can be found by clicking on "Instructional Strategies" on the main menu bar found on your left panel.
5.) Enfancing the "meaningfulness" of abstract equations can also aid students who are faving difficulty achieving mastery at the abstract levelboth by providing them a deeper levelof conceptual understanding and byenhancing their memory of the problem-solving process. One approach you might try is to reinforce what the numbers and symbols mean using language. By modeling language (and encouraging students to use the ir own (anguage) that describes what each number and symbol represents, students cangain a deeper level of understanding of the "abstract process" they are struggling to master.

For Example:
12

Provide your students multiple opportunities to use the ir language as they practice solving equations. As
students practice, they fiave the opportunity to associate "meaning" to the abstract process.

Instructional Phase 4: Maintenance - Periodic Practice to Maintain Student Mastery of Skills
*Maintenance activities at the abstract levelof understanding should include concrete and representational/drawing experiences as well as "abstract" (numbers and symbols only) experiences. By "re. visiting" previous concrete and representational/drawing experiences, students reinforce the conceptual understanding they acquired during those phases of instruction. Including "language experiences" during these maintenance activities, where students describe the ir solutions, also reinforces conceptual understanding students established during their concrete and representational/drawing experiences.

Purpose: to provide students with opportunities to maintain the ir levelof mastery of solving division story problems and division equations by drawing.

1. Instructional Games \& Self-Correcting Materials

Materials:
${ }^{*}$ De pendent on the Instructional Games or Self-Correcting Materials you implement.

Description:
*Periodically provide students opportunities to practice division with and without remainders via self-correcting materials and instructionalgames. This can be done via "centers,"in smallgroups, or as a whole class. Include opportunities to solve division problems with concrete materials and bydrawing in addition to abstract level practice opportunities. Even though students master a concept/skill at an abstract level, providing maintenance practice opportunities using concrete materials and by drawing reinforce their conceptual understanding. (*See the descriptions for "Instructional Games" and "Self-Correcting Materials" for more information of how to implement these student practice strategies.)
2. Problem of the Day

Materials:
Teacher -

- a written prompt on the chalkboard, dry-erase board, or overkead projector (e.g. a division problem or division story problem) or a concrete/drawing example representing a solution to a division equation (e.g. solution to a division problem that includes a remainder).

Students.

- paper and pencil to record their responses

Description:
Teacher presents a"problem of the day" that focuses on a particular skill or conceptual understanding of solving division story problems and/or divisionequations. The problem can be writtenin nature where students solve the problem with concrete materials, by drawing, or at the abstract levelonly. Students can also be challenged to develop a story problem for an already solved division equation. The "problem of the day" is displayed as students enter the room or as the period begins. Students are asked to "solve" the problem and provided necessary directions. After an appropriate amount of time, the teacher and the students "talk through" the problem and its solution. Students can individually describe how they approached the problem. Specific positive verbal reinforcement is provided by the teacher as well as specific feedbackregarding misunderstandings students may have. Teacher notes students who seem to be having difficulty for the purpose of revie wing/re-modeling appropriate skills and conce pts.

Ideas for Prompts:
1.) Display the concrete or drawing representation of an equation as well as its solution and ask students to represent the equation and the solution using only numbers and symbols.
2.) Display an equation and askstudents to represent the equation and the solution with concrete materials or drawings.
3.) Display a concrete, drawing, or abstract representations of an equation and have students develop a story problem for that equation.
4.) Display an equation and solution with concrete materials, by drawing, or with only numbers and symbols with one part of equation missing (e.g. one of the mixed numbers being added) and ask students to de termine the missing part.

