\mathcal{N} ame of Math Skill/Concept: Rounding to the nearest ten or fundred.
Prerequisite Skills Needed:

- round to the nearest ten and fundred using concrete materials and by drawing without a number line.
- round to the nearest ten and fundred using a number line with concrete materials and by drawing.
- skip count by tens.
- identify place value of digits in three digit numbers.

Learning Objectives:
1.) Round to the nearest ten or hundred by identifying the "talking digit" in two and three digit numbers.
2.) Round to the nearest ten or fundred by writing numbers to represent "counting on" and "counting back."
3.) Round to the nearest ten or fundred using proximity cues (Round to the Nearest Ten Chart or Round to the $\mathcal{N e}$ (erest \mathcal{H} undred Chart).

Important Ideas for Implementing \mathcal{T} fis \mathcal{T} eaching Plan:
1.) Because students with learning difficulties often have difficulty performing math skills at the abstract level, it is important that explicit links are made between both their concrete and drawing experiences and their abstract le velinstruction.
2.) Students will most likely benefit from first

Instructional Phase 1: Initial Acquisition of Skill/Concept-Teacher Directed Instruction
I. Teach Skill/Concept within $\mathcal{A} u t h e n t i c$ Context

Description: Continue to link abstract levelinstruction to contexts used to teach the skills at the concrete and representational/drawing levels.
II. Build Meaningful Student Connections

Purpose: to assist students to build meaningfulconnections between what they knowabout rounding to the ne arest ten and/or hundred bydrawing to rounding numbers without drawing pictures.

Learning Objective 1: Round to the nearest ten or fundred by identifying the talking digit in two and three digit numbers.

Materials:
Teacher -

- one example of the rounding process using concrete materials and a number line that can be clearly seen $6 y$ all students.
- one example of the rounding process using drawings and a number line that can be clearly seen by all students.
- a writtenle arning objective that is clearly visible to all students: "Ilse the $\mathcal{T A L K I N} \mathcal{N G} \mathcal{D I G I T}$ to round numbers to the nearest ten or fundred."

Description:
1.) Link to students'prior knowledge of rounding to the nearest ten and fundred using concrete materials, by
drawing, and using a number line with drawings.

For Example:

You have learned to round to the ne arest ten and to the ne arest fundred by using three very fielpfulstrategies. You first le arn how to round by using concrete materials like these base-ten materials (Hold up/display an example of rounding with concrete materials.). You also have le arned how to draw pictures to help you round to the nearest ten and hundred (Display an example of rounding a number with drawings and a number line.) Last, you le arned fow to use both concrete materials and drawings to round using a number line. (Point to the number line in 6oth the concrete and drawing examples.)
2.) I dentify the skill students will le arn: "Round to the nearest ten or fundred by identifying the talking digit in two and three digit numbers."

For Example:

Today, we are going to learn fow to round to the nearest ten and fundred by using a number line without concrete materials or drawings. We are going to le arn something specialabout the digits in the number we want to round. I will show you how to use the "Ialking Digit" to help us round numbers to the nearest ten or fundred. (Display the written le arning objective and point to it as you say it.) What are we going to le arn today? (Point to
 nearest ten and fundred.") That's right, we're going to learn how to use the talking digit to round numbers to the nearest ten and fundred.
3.) \underline{P} rovide rationale / me aning for

For Example:

Le arning how to use the talking digit in a number to round will really help you to round when you don't have concrete materials and when you don't have time to draw in order to round a number. You will not always fave concrete materials when you need to round and there will be times when drawing will take toolong. What are some examples of times we might need to round a number to its nearest ten or fundred? (Prompt students to offer previous contexts used to teach at the concrete and representationallevels and to offer "new"examples.)
III. Provide Explicit Teacher Modeling

Purpose: to provide students a clear teacher modelof rounding to the nearest ten and fundred without using concrete materials and without drawing.

Learning Objective 1: Round to the nearest ten or fundred by identifying the talking digit in two and three digit numbers.

Materials:
Teacher -

- an appropriate format to display numbers and number lines so that all students can see and hear.
- a selection of three digit numbers that are color coded (e.g. ones place is green, tens place is red, and hundreds place is 6 (ue - 347 .)
- a language card with the following phrase written: "round to the ne arest $\mathcal{H C N} \mathcal{N} \mathcal{D R E D}$."
- number lines prepared that represent the appropriate "hundreds" the given three digit number might be rounded to. The numbers represented should be increments of ten and the tens digit should be colorcoded appropriately.

For Example:

Description:
A. Break down the skill of rounding to the nearest ten or fundred by identifying the talking digit in two and three digit numbers.

1. Read the number.
2. Identify whether you are rounding to the "ten" or to the "fundred."
3. Identify the "talking digit" and underline it.
4. If talking digit is "5" or greater, then round up; if the talking digit is less than " 5 "then round down.
5. Checkyour answer by forming a number line and counting on or counting back or by using proximity cues.
B. Explicitly describe and modelhow to round to the ne arest ten or fundred by identifying the talking digit in two and three digit numbers.
*This example involves rounding to the "hundred" with three digit numbers. You should begin modeling "talking digits" by rounding to the nearest "ten" with two digit numbers. (Color-code the ones digit green and the tens digit red.) After students develop mastery of this skill, then move to modeling "talking digits" with three digit numbers and rounding to the nearest "fundred."
1.) Read the number (e.g. 347). *Color code the "talking digit" (tens place) for rounding to "hundreds" red. The ones digit should be color-coded green as you did with rounding two-digit numbers to the ne arest ten. The fundreds place can be color-coded blue. *Color-coding can help students with visual processing difficulties or attention problems to discriminate individual place values and the ir importance for rounding.

- Point to the numbers and digits
- Prompt student thinking - place value

For Example:

I have a three digit number here. (Point to the number.) The number is "three-fundred forty-seven." (Point to each numeral as you say what it represents.) What is the number? (Elicit the response, "three-fundred forty-seven.") Yes, the number is "three-fundred forty-seven." (Point to each numeral as you say what it represents.) What does the "three" represent? (Elicit the response, "three fundreds.") Good, the three is in the fundreds place and it represents "three" fundreds. What does the "four" represent? (Point to the " 4 " and elicit the response, "four tens.") Excellent! The four is in the tens place and it represents "four" tens. And what does the "seven"represent? (Point to the " 7 " and elicit the response, "seven ones.") Yes, the "seven" represents seven ones. So, the number"three-fundred forty-seven"means "three-fiundreds," "four tens," and "seven ones." (Point to each numeral as you say what it represents.)
2.) Identify whether you are rounding to the "ten" or to the "fundred."

- Point to language card
- Prompt students to say what they are rounding to

For Example:

\mathcal{N} ow that I Know what my number is and what it represents, its time to round it. I have some cards here that will tell me whether I need to round this number to the nearest "ten" or ne arest "fundred." (Display the card
 to the ne arest fundred. (Point to the phrase, "round to the ne are st $\mathcal{H} \mathcal{U N} \mathcal{D R E D}$.")
3.) Identify the "talking digit" and underline it.

- Link to identifying "talking" digit for ne arest tens place
- Cue by color coding digits and pointing to digits with finger
- Prompt student thinking

For Example:

Like we le arned when we rounded two-digit numbers to the nearest ten place, finding the "talking digit" can felp us a lot. If I covered the "three" in the number "three-fundred forty-seven," what number appears now? (Cover the "3" and elicit the response, "forty-seven.") That's right, the number left is "forty-seven." What would be the talking digit in "forty-seven" if you were going to round it to the nearest ten? (Elicit the response, "the seven.") That's right, the number in the one's place, "seven," is the talking digit if we were going to round "forty-seven" to the ne arest ten. The number in the one's place is the talking digit when we round to the nearest ten because any number in the one's place comes between the two tens we might round to.
(Uncover the " 3. .) This time, we have a three-digit number instead of a two digit number. More importantly, we have to round to the nearesthundred instead of the nearest ten. Do you think the number in the one's place will be the talking digit when we want to round to the nearest fundred? (Elic it the response, "no.") You are right. The one's digit is not the "talking digit" when we want to round to the ne arest fundred. What digit do you think is the talking digit for rounding to the nearest fundreds place? (Elicit severalstudent responses.) Thanks for taking a chance by giving us your ideas. Great thinking guys! The "talking digit" for rounding to the fundreds place is the digit in the "tens place." (Point to the " 4 .") I ust like the greencolor of the ones digit (Point to the "7.") helps us know it is the talking digit for rounding to the tens place, the red color of the tens place digit (Point to the "4.") helps us to remember that this is the talking digit for rounding to the ne arest fundreds place. Why do you think the digit in the "tens place" is the talking digit for rounding to the ne arest fundred. (Elicit severalresponses.) Again, thanks for taking a chance and sharing your ide as. You all have some excellent thoughts!
4.) Ulse a number line to develop understanding why the digit in the tens place is the "talking digit" for rounding to the nearest fundred.

- Display a number line and cue students to important features.

Prompt student thinking about number line

- Color-code "tens place"in numbers on number line
- Color -code "talking digits"
- Point to unique characteristics
- Point to numbers as you say them

For Example:

Let me show you with a number line why the "tens place" is the talking digit for rounding to the ne arest hundred. (Display a number line between " 300 " and " 400 " by tens with" 347 "represented.)

347										
300	310	320	330	340	350	360	370	380	390	400

Let's lookat the number line. What do you see? (Elicit a variety of responses, "it goes from three hundred to four fundred;"the numbers go up by ten;" "three-fundred forty-seven is between three. fundred forty and three-fundred fifty.") Gre at observations! This number line represents the numbers from"three-fundred" to "four fundred." "Four fundred" is one-fundred more than"three-fundred." (Point to each number as you say the number.) The numbers written along the number line increase by tens: "three-fundred ten, three-fundred twenty, three-fundred thirty..." (Point to each number as you say it.) The number we want to round to the nearest fundred, "three-fiundred forty seven," is also represented. (Point to " 347. ") I see one more thing. The tens place in each number between"threehundred" and "four-hundred" is color-coded red. (Point to each tens place digit in the numbers" $310-$ $390 . "$ They are colored red for a purpose. Which digit in "three-fundred forty-seven" is also colored red? (Elicit the response, "four/the tens digit.") Yes, the "four"which is in the tens place is also colored red.

- \quad ink the process of counting on and counting back by tens using base-ten materials and drawings to counting on and counting 6 ack $6 y$ tens with numbers only.
- Think aloud

For Example:

In order to understand why the tens digit is the "talking digit" for rounding to the ne arest fundred, we can look at the tens digits in this number line. When we used base-ten materials and drawings to round numbers to the nearest fundred, we counted on to the nearest findred greater than our number. We
also counted back to the nearest fundred less than our number. We do the same thing when we are just using numbers and not using base-ten materials or drawings.

- Model "counting on" by tens.
cue to start at "tens" place
make talfies as you count on
point to each multiple of ten on number line as you count on

For Example:
\mathcal{N} ow, we could count on by ones from "three-fundred forty-seven" to "four-fundred." (Point to " 347 " and then point to "400.") We could start with "three-fundred forty-seven" and count on: "three-fundred forty-eight, three-fundred forty-nine, three-hundred fifty, three-fundred fifty-one." (Demonstrate using your fingers to keep count as you count on to "three-fundred fifty-one.") \mathcal{N} (ow, I could continue to count on to "four-hundred" but it would take a long time and I probably don't have enough fingers to count on all the way to "four-hundred." Aneasier way is to count on by tens, just like you did with your Gase-ten materials and drawings. The "talking digit," which is the red colored tens digit (Point to several of the red color-coded tens digits.), represents tens. We can count on by tens by counting on using our "talking digits." Let me showyou what I mean. I start with the "talking digit" or tens place in my number, "three-fundred forty-seven." (Point to the " 4 " in 347 .") I can count on by tens to "four-hundred" by starting at "three-fundred forty." I don't really need to read the "seven" (Point to the " 7 .") since I am counting on by tens and not ones. "Seven" is in the ones place. When I count on, I ll make tallies on the board so I cankeep track of how many tens I count on to four-fundred. To count on by tens, I count on from three-fundred forty by saying, three-fundred fifty, three-fundred sixty, three-fundred seventy, three-fundred eighty, three-fundred ninety, four-hundred. (Point to each number on the number line as you say the number and record eack "ten" you count on by making a tally markon the board underneath each number.)

- Modeldetermining how many tens were "counted on" and "howmany"that represents.
- Prompt student thinking - "How many?"
- Point to groups of tally marks
- Ulse place value language ("six tens") and say what that represents ("sixty")

For Example:

$\mathcal{H o w}$ many tens is "three-fundred forty-seven from four-fundred? (Point to the tally marks, and elicit the response, "six tens.") Yes, "three-fundred forty-seven is about six tens from four-fundred. How many is six tens? (Elicit the response, "sixty.") Yes, six tens equals "sixty." Is "three-fundred forty-seven" exactly six tens, or sixty from "four-hundred?" (Elic it the response, "no.") Why? (Elicit appropriate
responses, e.g. "because we didn't include the seven ones in three-fundred forty-seven; we started counting on with three-fundred forty, not three-fundred forty-seven.") Great thinking guys!

- Model"counting back" by tens.
cue to start at "tens" place/prompt student thinking - "Why?"
make tallies as you count back
point to each multiple of ten on number line as you count back

For Example:
\mathcal{N} ow, let's count back to "three-fundred" to see if "three-fundred forty-seven" is nearer to three.
fundred than it is to "four-fundred." Our we counting back by ones or by tens? (Elicit the response, "tens.") Yes, we are counting back by tens. What is the "talking digit" for rounding to the ne arest hundred? (Elicit the response, "the red colored tens digit.") Yes, the "talking digit" for rounding to the nearest fundred is the tens place digit. It is colored red in this example. (Point to several "tens digits.") To count backfrom "three-fundred forty-seven" to "three-fundred" (Point to each number on the number line as you say it.) what number do we start with since we are counting back by tens? (Elic it the response, "three-fundred forty.") Why do we start with "three-fundred forty" rather than "three. hundred forty-seven?" (Elicit the response, "because we are counting by tens; the forty in three fundred forty-seven is the talking digit so we don't need to worry about the ones place.") Great thinking! Since we know the talking digit for rounding to the ne arest fundred is the tens place and we are counting back by tens, we only have to consider the numbers to the tens place. OK, I say "three-fundred forty" (Point to " 340. ") and then count back by tens. I'll write tally marks again to count the number of tens we count Gack. Everyone, count 6ack with me. (Count 6ack by tens with your students, writing tally marks under each number as you count back: "three-fundred thirty, three-hundred twenty, three-fundred ten, three. fundred.")

- Modeldetermining howmany tens were "counted back" and "howmany"that represents.
- Prompt student thinking
- Point to group of tally marks

For Example:
$\mathcal{H o w}$ many tens is "three-fundred forty seven" from"three-fundred?" (Point to the tally marks and elicit the response, "four tens.") Yes, three-fundred forty-seven is about "four tens"from"three-fundred." How many is "four tens?" (Elicit the response, "forty.") Yes, four tens equals "forty." Is "three-fundred forty-seven" exactly four tens, or "forty"from "three-fundred?" (Elic it the response, "no.") Why? (Elicit appropriate responses, e.g. "because we didn't include the seven ones in three-fundred forty-seven; we started counting Gack with three-fundred forty, not three-fundred forty-seven.") Great thinking guys!

- Modelcomparing the totalnumber of tens "counted on" and the totalnumber of tens "counted back."
- Prompt student thinking
- Point to each group of tally marks
- Say value of eack group
- Ulse place value language and prompt students to say what it represents

For Example:

\mathcal{N} ow that we have counted on to "four hundred"and counted back to "three-fundred" from"three.
hundred forty-seven," what do we need to do to determine which is the nearest fundred we round to? (Elicit the response, compare howmany tens "three-fundred forty-seven" is from "four-fundred" and how many tens it is from "three-fundred.") Yes, we need to compare fowmany tens "three-fundred fortyseven" is from "four-hundred" and howmany tens "three-hundred forty-seven" is from"three-fundred." (Point to each group of tally marks that represents the "counted on" number of tens and the "counted Gack" number of tens.) How many tens did we count on to "four-fundred?" (Point to the appropriate group of tally marks and elicit the response, "six.") Yes, we counted on six tens to "four-fundred." (Point to each tally mark or number on the number line and count them aloud.) How many is "six tens?" (Elic it the response, "sixty.") Yes, six tens equals "sixty." How many tens did we count back to "three. hundred?" (Point to the appropriate group of tally marks and elicit the response, "four.") Yes, we counted on four tens to "three-fundred." (Point to each tally markor number on the number line and count them aloud.) How many is "four tens?" (Elicit the response, "forty.")

- Model deciding which "fundred" to round to.
- Prompt student thinking - "Why?"
- Point to groups of tally marks to cue

For Example:

OK, which hundred should we round "three-fundred forty-seven" to? (Elicit the response, "three.
fundred.") Yes, we should round "three-fundred forty-seven" to "three-fundred" to round it to the nearest hundred. Why? (Elicit the response, "because it is closer to "three-fundred" than it is to "fourfundred.") Yes, we know "three-fundred forty-seven" is closer to "three-fundred" than it is to "fourhundred" and therefore we round "three-fundred forty-seven" to three-fundred. How did we find out "three-hundred forty-seven" is closer to "three-hundred?" (Elicit the response, "by counting on and counting back by tens.") Yes, we counted on from "three-fundred forty-seven" to "four-fundred" (Point to " 347 " and then to " 400 .") by tens (Point to the numbers, " $350,360,370 \ldots$..) We atso counted back from "three-hundred forty-seven" to "three-fundred" (Point to " 347 " and then to " 300 .") 6y tens (Point to the numbers, " $330,320,310 \ldots$ ".). We found that "three-fundred forty-seven" is about six tens, or "sixty"from "four-hundred" and it is about four tens, or "forty"from"three-hundred." (Point to each set of tally marks as you say this.) Because four tens, or "forty" is less than six tens, or "sixty," then we

Know that "three-fundred forty-seven is nearer to "three-fundred"than it is to "four-fundred." Because "rounding to the nearest fundred" means we find the fundred a number is closest to, then we now know we round "three-fiundred forty-seven" to "three-fiundred."
5.) Review what digit in a number is the "talking digit" for rounding to the ne arest fundred and prompt student thinking about why the "talking digit" for rounding to the nearest fundred is the digit in the tens place.

- Prompt student thinking - "What is talking digit?"
- Point to "talking digit"
- Prompt student thinking - "Why?"

For Example:

What is the talking digit that helps us round numbers to the nearest fundred? (Elicit the response, "the digit in the tens place.") Yes, the digit in the tens place is the "talking digit" for rounding numbers to the ne arest fundred. How does knowing this help us to round to the ne arest fundred? (Elic it the response, "because it reminds us to count on and back by tens.") That's correct. Because the "talking digit" for rounding to the nearest fundred is the digit in the tens place, it reminds us to count on and count back to the nearest fundred by "tens." What is the "talking digit" for "three-fundred forty-seven" when we want to round to the ne arest fundred? (Point to " 347 " and elicit the response, "the four.") Yes, the four is the "talking digit" in the number "three-fundred forty-seven." (Point to "4.") Why is "four" the "talking digit?" (Elicit the response, "because it is in the tens place.) Exactly! The "four" is in the tens place, and the digit in the tens place is the "talking digit" for rounding to the nearest fundred.
6.) Repeat steps $1-5$ at least three more times with different three digit numbers. *You may decide to fade the use of the number line after the second or third example.

Learning Objective 2: Round by writing numbers to represent "counting on" and "counting back" to the nearest ten or fiundred.

Materials:
Teacher -

- chalkboard, dry-erase board, chart paper, or overfiead to write on.
- multicolored chalk, markers or pens for writing.
A. Break down the skill of rounding by writing numbers to represent "counting on" and "counting back" to the nearest ten or fundred.
1.) Identify whether you are rounding to the nearest ten or fundred and decide what the "greater" and "Lesser"ten or fundred is.
2.) Identify the talking digit of the number to be rounded and decide whether the "talking digit" tells you to "count on" and "count back" by ones or by tens.
3.) Count on by writing numbers (by ones for rounding to the nearest ten and by tens for rounding to the nearest fundred.).
4.) Count back by writing numbers (by ones for rounding to the nearest ten and by tens for rounding to the nearest fundred.).
5.) Compare the "count on"set of numbers to the "count 6ack" set of numbers and decide which ten or hundred the number should be rounded to.
6.) Write the nearest ten or fundred.
B. Explicitly Describe and Model fow to round by writing numbers to represent "counting on" and "counting back" to the nearest ten or fundred.

Key Ideas:

1.) Follow the same process described in the Representational Levelinstructional Plan for rounding to the ne arest ten or fundred by drawing except model how to write numbers when counting on and counting 6ackinste ad of drawing pictures.
2.) Emphasize the link between the pictures students le arned to draw (long lines for tens and shout Cines/dots/circles/squares for ones) and the numbers they now write when counting on and counting back by ones and tens (e.g. the numbers are what we actually say when we counted on and counted back while drawing pictures.)
3.) For step number one, it maybe helpful to cue students by using a number line to identify what the "greater" and "lesser"ten or hundred is. Student's knowledge of the "talking digit" can also be a useful cue. The talking digit "talks to" the lesser ten or fundred. Once students can identify the "lesser ten or fundred, then they can simply count on by ten or hundred to determine the "greater" ten or fundred.

Example for"tens:"

1.) $47-$ the " 7 "talks to the " 4 "whichrepresents"four tens" or "forty." Forty is the "Lesserten."
2.) Count on from 40 6y "ten" and youreach "50." "50" is the "greater"ten.

Example for "hundreds:"
3.) 347 - the "4"talks to the " 3 " which represents"three fundreds" or "three-hundred." Three-fundred is the "lesser fundred."
4.) Count on from " 300 " by "one-fundred" and you reach " 400 ." "400" is the "greater" fundred.
4.) When counting on and counting back, write numbers in a row. *Replicating the process used for drawing by writing the numbers slightly above the number to be rounded can be a usefulcue and provides a nice link to their drawing and concrete experiences using a number line. When counting back by tens to round to the nearest fundred, remember to continue to modelcounting on and counting backstarting at the "tens" place. In the example below for "hundreds," notice that you are counting on and counting back from " 340 " not " 347 ." This replicates the process you taught at the concrete and drawing levels as well as when you taught how to use the talking digit to round to the ne arest fundred.

Example for "tens:"

404142434445464484950

47

Example for "Kundreds:"

$$
\begin{array}{lllllllllll}
300 & 310 & 320 & 330 & 350 & 360 & 370 & 380 & 390 & 400
\end{array}
$$

5.) Use the color cueing for the talking digit that you used when teaching how to round by identifying the talking digit, 6ut fade the color cueing as students demonstrate understanding.
6.) When modeling how to compare the set of numbers "counted on" and "counted back" circling each group may help as you count the number of ones or tens the number to be rounded is from the "greater" and "lesser" tens/fundreds.
7.) Model this process at le ast three times for both rounding to the ne arest ten and rounding to the ne arest hundred before moving to Scaffolding Instruction.

Learning Objective 3: Rounding to the nearest ten or fundred using proximity cues (Round to the Nearest Ten Chart or Round to the Nearest Hundred Chart).
 how to use proximity as a cue for rounding.

Materials:
Teacher-

- a "Round to $\mathcal{N e}$ arest $\mathcal{T e n}$ Chart" (i.e. a chart that depicts the numbers $0-100$ grouped by tens in rows so that each rowdepicts the "lesser" and "greater"ten:

For Example:

0	1	2	3	4	5	6	7	\mathcal{S}	9	10
10	11	12	13	14	15	16	17	18	19	20
20	21	22	23	24	25	26	27	28	29	30
30	31	32	33	34	35	36	37	38	39	40
40	41	42	43	44	45	46	47	48	49	50
50	51	52	53	54	55	56	57	58	59	60
60	61	62	63	64	65	66	67	68	69	70
70	71	72	73	74	75	76	77	78	79	80
80	81	82	83	84	85	86	87	\mathcal{S}	89	90
90	91	92	93	94	95	96	97	98	99	100

- a "Round to \mathcal{N} earest Thousand Chart" (i.e. a chart that depicts multiples of ten from 0-1000 grouped by ten multiples in rows so that each row depicts a the "lesser" and "greater" fundred.

| 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 | 20 |
| 200 | 210 | 220 | 230 | 240 | 250 | 260 | 270 | 280 | 290 | 300 |
| 300 | 310 | 320 | 330 | 340 | 350 | 360 | 370 | 380 | 390 | 400 |
| 400 | 410 | 420 | 430 | 440 | 450 | 460 | 470 | 480 | 490 | 500 |
| 500 | 510 | 520 | 530 | 540 | 550 | 560 | 570 | 580 | 590 | 600 |
| 600 | 610 | 620 | 630 | 640 | 65 | 660 | 670 | 680 | 690 | 700 |
| 700 | 710 | 720 | 730 | 740 | 750 | 760 | 770 | 780 | 790 | 800 |
| 800 | 810 | 820 | 830 | 840 | 85 | 860 | 870 | 880 | 890 | 900 |

900	910	920	930	940	950	960	970	980	990	1000

- nine "peep fole"cards. Each card is one row wide and nine columnslong. Each card has one square cut. out space positioned for one number position in columns 2-9 (e.g.one card when positioned between the first and last number in a row will reveal the second number in the row; the second card when positioned Getween the first and last number in a row will reve al the third number in the row; etc.)

For Example:

*This "peep hole" card reveals the "third" number in a row when placed between the first and last number in the row.

0	10	20	30	40	50	60	70	80	90	100
100		120								200
200	210	220	230	240	250	260	270	280	290	300
300	310	320	330	340	350	360	370	380	390	400
400	410	420	430	440	450	460	470	480	490	500
500	510	520	530	540	550	560	570	580	590	600
600	610	620	630	640	65	660	670	680	690	700
700	710	720	730	740	750	760	770	780	790	800
800	810	820	830	840	85	860	870	880	890	900
900	910	920	930	940	950	960	970	980	990	1000

- aruler or tape measure
A. Breakdown the skill of rounding to the nearest ten or fundred using proximity cues (Round to Nearest Ten Chart and Round to \mathcal{N} (earest \mathcal{H} undred Chart).
1.) Introduce the Round to $\mathcal{N e}$ arest \mathcal{T} en Chart and/or Round to Nearest $\mathcal{H} u n d r e d$ Chart.
2.) Identify a number to be rounded and whether it will be rounded to the nearest ten or fundred.
3.) Identify which chart can be used for rounding to the nearest ten (Round to Nearest Ten Chart) and which chart can be used for rounding to the ne arest hundred (Round to Ne arest $\mathcal{H} u n d r e d$ Chart).
4.) Identify the "talking digit" and what number on the Round to Nearest Ten Chart or Round to Nearest Hundred Chart the "peep hole" card should be placed.
5.) Choose the appropriate "peephole"card to use and place it betweenthe "lesser"and "greater"tens or the "Lesser"or "greater" fundreds.
6.) Modeldetermining whicf ten or fundred to round to by pointing out the distance betwe en the number you are rounding and each ten or fiundred.
7.) Repeat this process at least three times for bothrounding to the nearest ten and to the ne arest fundred.
B. Explic itly Describe and Modelfow to round to the nearest ten or fundred using proximity cues (Round to \mathcal{N} earest $\mathcal{T e n}$ Chart and Round to \mathcal{N} (earest Hundred Chart).
1.) Introduce the Round to $\mathcal{N e}$ (Rest Ten Chart and/or Round to $\mathcal{N e}$ arest Hundred Chart. *Explicitly modelthe number sequence of each chart, the manner in which numbers are represented (e.g. in the Round to $\mathcal{N e}$ arest Ten Chart, the numbers increase from one to one-hundred by ones while the numbers increase from " 0 " to "1000" in the Round to $\mathcal{N e}$ arest Hundred Chart.), and the fact that each number is equidistant apart. Because you will be using proximity the rounding cue, it is important that students know the space between numbers is the same. Prompt your students'thinking regarding why the Round to Ne arest \mathcal{T} (\mathcal{N} Chart would be usefulfor rounding to the ne arest ten and why the Round to $\mathcal{N e}$ arest \mathcal{H} undred Chart would be fielpfulfor rounding to the nearest fundred (e.g. the Round to \mathcal{N} (earest \mathcal{T} en Chart represents "tens" and the Round to \mathcal{N} earest $\mathcal{H} u n d r e d$ Chart represents "fundreds.").
2.) Identify a number to be rounded and whether it will be rounded to the ne arest ten or fundred.
3.) Identify which chart can be used for rounding to the nearest ten (Round to Nearest Ten Chart) and which chart can be used for rounding to the nearest fundred (Round to \mathcal{N} (earest Hundred Chart). *Re-emphasize why eacfichart can be used for rounding to the nearest ten or fundred (re-state the rationale students stated in step \# 1).
4.) Identify the "talking digit" and what number on the Round to $\mathcal{N e}$ arest \mathcal{T} en Chart or Round to $\mathcal{N e}$ arest Hundred Chart the "pe ep hole" card should be placed (e.g.for rounding to the ne arest ten, the number to be rounded will be the number visible through the peep fole. For rounding to the ne arest fundred, students must identify the "ten" they should round from-for 347 , the talking digit is " 4 "therefore they round from " 340 ." The "peep hole" should be placed to reve al "340.").
5.) Choose the appropriate "peephole"card to use and place it between the "Lesser"and "greater"tens or the "lesser" or "greater" fundreds (dependent on the position of the number is in the row of the chart - e.g. the number " 44 "would require the "peephole"card that has a space that is positioned over the "fifth" number in the row. The card would then be positioned betweenthe "Lesser"ten-40-and the "greater"ten-50.).
6.) Model how to determine which ten or fundred the number should be rounded to by pointing out the how much distance there is from the number you are rounding (number revealed by the "peep fole") and each ten or
fundred. The ten or fundred that is closer to the "peep fole"number is the ten or fundred the number should be rounded to. Have your students estimate which distance is less. *Ulse a ruler or tape measure to verify which distance is less and which distance is greater.

For Example:

*The distance from" 120 " to " 100 " is less than the distance from" 120 " to " 200 ." The card makes the distance "stand out."

0	10	20	30	40	50	60	70	80	90	100
100		120		240	250	260	270	280	290	300
200	210	220	230	2400						
300	310	320	330	340	350	360	370	380	390	400
400	410	420	430	440	450	460	470	480	490	500
500	510	520	530	540	550	560	570	580	590	600
600	610	620	630	640	65	660	670	680	690	700
700	710	720	730	740	750	760	770	780	790	800
800	810	820	830	840	85	860	870	880	890	900
900	910	920	930	940	950	960	970	980	990	1000

7.) Repeat this process at least three times for both rounding to the nearest ten and to the ne arest fundred.

* Key Ideas:

1.) This method provides an effective way to use "proximity" as a cue for rounding. It is not meant to be the primary way to teach rounding at the abstract level. However, some students will greatly benefit from suck cueing.
2.) It is very important that those characteristics of both the Round to Nearest Ten Chart and Round to \mathcal{N} earest Hundred Chart described in step \# 1 are explicitly modeled before this method of teaching rounding is taught. Linking students'knowledge of/experiences of a Hundreds Chart to these two charts can be helpful.
3.) As described, this method necessitates that students understand how to identify the talking digit and what it means. Therefore, this method should be introduced after you have taught how to use the talking digit to round.
4.) The use of the Round to $\mathcal{N e}$ arest \mathcal{T} en Chart and the Round to $\mathcal{N e}$ arest $\mathcal{H} u n d r e d$ Chart can be excellent cues for counting on and counting back by ones and tens when rounding.

Scaffold Instruction

Purpose: to provide students the opportunity to build the ir initial understanding of how to round numbers to the nearest ten/hundred without concrete materials or drawings, and to provide you the opportunity to evaluate your students'level of understanding after you have initially modeled this skill.

Materials:
${ }^{*}$ De pendent on the skill you are Scaffolding Instruction for (See the materials listed for the specific skill you want to scaffold under Explicit Teacher Modeling).

Description:
*Scaffolding at the abstract levelof instruction should occur using the same process as scaffolding instruction at the concrete and representational/drawing levels of instruction (See the description of Scaffolding Instruction for, "rounding to the nearest hundred using Gase ten materials and a number line," in the Concrete Level Instructional Plan.). The steps listed for each skill during Explicit Teacher Modeling should be used as structure for scaffolding your instruction.
A. Scaffold instruction using a figh levelof teacher direction/support. (*Dependent on the needs of your students, you may want to continue to associate drawings to the abstract levelrounding process during this phase of scaffolding (See Learning Objective 1 described under Explicit Teacher Modeling.) Move to the next phase of scaffolding only when students demonstrate understanding and ability to respond accurately to your prompts.
B. Scaffold instruction using a medium level of teacher direction/support. (If you associated drawings with the abstract process for rounding while scaffolding using a figh levelof teacher direction/support, then do not include drawings during this phase of scaffolding). Move to the next phase of scaffolding only when students demonstrate understanding and ability to respond accurately to your prompts.
C. Scaffold instruction using a lowlevelof teacher direction/support. (Students should actually round as you prompt them during this phase of Scaffolding Instruction.) Move students to independent practice of the skill only after they demonstrate the ability to perform the skill with limited prompting from you.

1. Receptive/Recognition Level

Purpose: to provide students multiple opportunities to round to the nearest ten or fundred by writing numbers (instead of drawing pictures) to "count on" and "count back"to round to the ne arest ten or fundred..

Learning Objective 3: Round to the nearest ten/fundred by drawing using a number line.

Instructional Game - Board Game

Materials:
Teacher -

- generic game boards (*Game boards can be made by using manila folders or square pieces of tag-board and configuring multiple spaces (i.e. $15-30$ spaces will provide multiple practice opportunities) on which students can move theirgame pieces. A rectangle can be drawn on the game-board to represent where the response cards are placed. At the beginning of the year, students can be taught fow to make game boards and then these game-boards can be used throughout the year!) Game-boards can be as colorful/creative or as simple in nature as appropriate given your time and your student's ability le vel. Old or discarded commercially made game boards also can be used (e.g. "Monopoly," "Life," "Stratego," etc.)
- dice or spinners
- multiple sets of cards that have: Front - 1.) the number to be rounded and the numbers representing counting on/counting back to the nearest ten/fundred written oneitfer side (e.g. 30213233343536 37383940); 2.) below the example is written one or morequestions with three choices; Back-1.) the correct choice (s) is written. *To facilitate making these cards, you can make one set for each levelof difficulty using plain paper so that the examples, questions, and choices are a size that can fit on one side of a 4×5 note-card. Number eachexample \#1-\#20 in the top right corner so that each card fias the number appear at the top right corner. Then you can make multiple copies of the one set, cut them out, paste them on note-cards, and laminate the note-cards. Students can assist in pasting the drawings/cfoices \& answers on note-cards!
- acopy of the originalset of problems so the teacher cancheckindividualstudent response sheets.

Students.

- eacf smallgroup has a game-board, die or spinner, a set of cards.
- a sheet of paper to record which number example they respond to and whether they ans wered it correctly or not.

Description:
Activity:
Students play in small groups using ageneric game board (See description under "Materials.") Students respond to cards that depict the number to be rounded in a darkcolor (6lack or blue) and then numbers that count on and count back to the nearest ten or fundred in a contrasting color (red). A simple question is written below the example with three choices (e.g. What is the nearest ten? How many ones to the greater ten?" How many tens to the lesser fundred?). On the back is the correct answer. To move, students roll a die or spin a spinner. If they respond correctly, then they move the appropriate number of spaces. To evaluate student performance, students can record the question number they respond to on a sheet of paper and make a markindicating whether they answered it correctly or incorrectly. To add more challenge, cards can be divided into two or three piles that represent more and more challenging questions. Students choose which level they want to answer. Students can be rewarded for answering more challenging questions correctly by moving one or more additional spaces.

Instructional Game Steps:
1.) Introduce game.
2.) Distribute materials.
3.) Provide directions for game, what you will do, what students will do, and reinforce any behavioral expectations for the game.
4.) Provide time for students to askquestions.
5.) Model how to respond to the card prompts.
6.) Provide time for students to ask questions about how to respond.
7.) Model howstudents cankeeptrack of their responses.
8.) Play one practice round so students can apply what you have modeled. Provide specific feedback/answer any additional questions as needed.
9.) Monitor students as they practice by circulating the room, providing ample amounts of positive reinforcement as students play, providing specific corrective feedback/re-modeling skill as needed.
11.) Play game .
12.) Encourage students to review their individual response sheets, write the totalnumber of "correct" responses under the "C" (Correct) column and do the same for the " \mathcal{H} " ($\mathcal{H e}$ (p) column.
13.) Reviewindividual student response sheets to determine levelof understanding/proficiency and to determine whether additional modeling from you.
2. Expressive Level

Purpose: to provide students multiple opportunities to "solidify"connections between what they knowabout rounding to the nearest ten and fundred by drawing to rounding to the nearest ten and fundred at the abstract
level. The use of a structured "planned discovery activity sheet" provides students who have learning proble ms appropriate cueing that allows them to independently make the connections between the ir
"representational/drawing level" of understanding and their abstract levelof understanding.

Learning Objective 1: Round to the nearest ten or fundred by identifying the "talking digit" in two and three digit numbers.

1. Planned $\operatorname{Discovery}$ Activity

Materials:
Teacher -

- appropriate number of structured "planned discovery activity sheets. The sheet contains multiple
examples of the following: 1.) a drawing of rounding to the nearest ten or fundred (e.g. a number line with
the appropriate drawings above that represent the number to be rounded, the "count on"drawings, and
the "count back" drawings.); 2.) the following prompts/questions with a space provided to write the
player's answer: What number is being rounded? Rounding to nearest ten or fundred? What is the talking
digit? What ten or fundred should number be rounded?

Example for rounding "162" to ne arest fundred:

What number is being rounded? \qquad Rounding to the nearest ten or fundred?
\qquad

What is the talking digit? \qquad What ten or fundred should number be rounded?
\qquad

- Answer key for planned discovery activity sheet.
- Cue cards that show one example of rounding to tens and one example of rounding to fundreds with appropriate answers to the questions/prompts. Students who need additional prompting can use these cards as needed to respond to the planned discovery activity sheet.

Students.

- each pair has two planned discovery activity sheets.
- "example"cue cards if appropriate.
- pencils for writing.

Description:
Activity:
Students work in pairs to respond to a planned-discoverylearning sheet (See description under "Materials.").
Each sheet has drawings on a number line that represent rounding to the ne arest ten or hundred (*the numerical form of the value to be rounded is not written). Students respond by writing the number that is being rounded, identifying whether the drawing represents rounding to the nearest ten or fundred, identifying the "talking digit," and identifying what ten or fundred the number should be rounded to.

Students take turns responding to each example. The "coach" describes the drawings and then asks the "player" to respond to each question/prompt for that drawing. The coach writes the player's answer in the appropriate space on that student's planned-discoverylearning sheet. The coach and player then refer to the answer key to check the player's responses. If the player's responses are correct, the students switch "roles" and move to the next example. If the player's responses are incorrect, the coach and player discuss why the player's response differed from the correct answer. After they have reached agreement, the students raise their hand to signal the teacher. When the teacher approaches them, the player (or coach and player) explain what theylearned (why the response was not correct). For students who may need additional prompting/cueing, two example cards could be provided. One"example"could sfow a drawing representing rounding to tens with appropriate responses to the questions and one "example"could showa drawing representing rounding to hundreds with appropriate responses to the questions. Students could refer to these "example"cards as needed as they respond. The teacher circulates the room monitoring students as they work, providing positive reinforcement, specific corrective feedback, and listening to student explanations.

Planned $\operatorname{Discovery~Activity~Steps:~}$

1. Develop Planned Discovery Activity Learning Sheet as described under Materials.
2. Distribute the Planned $\mathcal{D i s c o v e r y} \operatorname{Activity} \mathcal{L e}$ arning Sheet and provide cle ar directions for completing the activity, including appropriate befavioral rules.
3. Modelfow to respond to one example on the Planned Discovery Learning Sheet (and modelappropriate befraviors as needed).
4. Provide students with appropriate materials (e.g. Cue cards).
5. Monitor students as they practice, providing appropriate corrective feed thinking, providing positive reinforcement, and modeling or cueing as needed.
6. At the conclusion of the activity, provide students with solutions to the Planned Discovery Activity Learning Sheet. Emphasize why the answers are correct.
7. Review student response sheets and note special difficulties individual students may be having and/or progress they are making.

Instructional Phase 3: Evaluation of Student Learning/Performance (Initial Acquisition through Mastery/Maintenance)

1. Continuously Monitor Chart Student Performance

Purpose: to provide you with continuous data for evaluating student le arning and whe ther your instruction is effective. It also provides students a visual way to "see"their learning.

Materials:
Teacher -

- appropriate prompts if they will be oral prompts
- appropriate visualcues when prompting orally

Student -

- appropriate response sheet/curriculum slice/probe
- graph/chart

Description:

Steps for Conducting Continuous Monitoring and Charting of Student Performance:
1.) Choose whether students should be evaluated at the receptive/recognition levelor the expressive level.
2.) Choose an appropriate criteria to indicate mastery.
3.) Provide appropriate number of prompts in an appropriate format (receptive/recognition or expressive) so students can respond.

- At the abstract levelof understanding, the most efficient format for a curriculum slice/probe is written (e.g. student responds in writing to written prompts). In some cases, you may want to use oral prompts where written examples are provided on the chatkboard/dry-erase board or overhead projector (e.g. three digit numbers written above various number lines and students respond to several teacher
questions about each example: "What is the nearest ten? What is the nearest fundred? How many ones did you count on to the greatest ten? How many tens did you count back to the lesser fundred?).
4.) Distribute to students the curriculum slice/probe/response sheet/concrete materials.
5.) Give directions.
6.) Conduct evaluation.
7.) Count corrects and incorrects/mistakes (you and/or students cando this depending on the type of curriculum
slice/probe used-see step \#3).
8.) You and/or students plot their scores on a suitable graph/chart. A goal line should be visible on each students' graph/chart that represents the proficiency (near 100% accuracy with two or fewer incorrects/mistakes) and a rate (\# of corrects per minute) that will allow them to be successful when using that skill to solve real-life problems and when using the skill for higher levelmathematics that require use of that skill.
9.) Discuss with children their progress as it relates to the goal line and the ir previous performance. Prompt them to self-evaluate.
10.) Evaluate whether student(s) is ready to move to the next levelof understanding or has mastered the skill at the abstract levelusing the following guide:
$\mathcal{A b s t r a c t}$ Level: demonstrates near 100% accuracy (two or fewer incorrects/mistakes) and a rate (\# of corrects per minute) that will allow them to be successful when using that skill to solve real-life problems and when using the skill for higher levelmathematics that require use of that skill.
11.) Determine whether you need to alter or modify your instruction based on student performance.

2. Additional Assessment Activity Appropriate \mathcal{F} or \mathcal{T} fis $\mathcal{M a t h}$ Skill/Concept
${ }^{*}$ This assessment activity can be used with students who demonstrate difficulty with rounding at the abstract le vel.
A. Flexible Matf Interview/C-R.A Assessment

Purpose: to assess where student understanding of the rounding process is "breaking down."

Materials:
Teacher -

- appropriate concrete materials for rounding (See Concrete LevelInstructional Plan-Explicit Teacher Mode (ing.).
- number lines for rounding to nearest ten or fundred.
- appropriate examples for assessment (nearest ten and nearest fundred)
- paper to record notes.
\mathcal{H} ave students round to the ne arest ten and fundred using concrete materials, by drawing, and without concrete materials or drawings. Also have students round with and without the use of number lines. Ask students to explain the ir answers as they respond. Note where in the rounding process students "breakdown;" 6 oth at what level they begin having difficulty and at what point within that levelof understanding they demonstrate misunderstanding/non-understanding. Based on where students demonstrate difficulty, provide explicit teacher modeling at that level of understanding and for the particular sub-skill they are having difficulty with. As the student demonstrates understanding, scaffold your instructionuntil they are ready to practice the skill independently. As students demonstrate mastery of the skill at that level of understanding, then provide explicit teacher modeling at the next levelof understanding. Follow this process until students demonstrate mastery at the abstract level.

Key Ideas

1.) Students who demonstrate difficulty at the abstract levelof understanding may have "gaps"in their understanding that can trace back to the representational/drawing levelor even the concrete level. $\mathcal{B y}$ providing additional teacher modeling at the leveltheir "gap"in understanding began and then moving them from a concrete-to-representational-to-abstract levelof understanding, you can assist students to become successful at the abstract level of understanding.
2.) Sometimes students demonstrate difficulty at the abstract level because they did not receive enough practice opportunities at the concrete and representational/drawing levels. The drawing levelis a very important step for these students. Some students need continued practice drawing solutions and associating the ir drawings to the abstract symbols and the mental processes necessary to performat the abstract level.
3.) Some students understand the concept, but have difficulty remembering the steps involved to perform the kill at the abstract level. Providing students with cues they can refer to as they practice at the representational/drawing and abstract levels of instruction is very fielpful. Such cueing provides them the independence to practice. Multiple practice opportunities translate into repetition and repetition enfances me mory.

Instructional Phase 4: Maintenance - Periodic Practice to Maintain Student Mastery of Skills
*Se suggestions described under this section for both the concrete and representationallevelinstructional plans.

