Instructional Plan

Representational/Picture Drawing Level
$\mathcal{N a m e}$ of $\mathfrak{M a t h} S \mathrm{Kill} /$ Concept: Rounding to the nearest ten and/or fundred bydrawing pictures that represent concrete materials.

Prerequisite SKills Needed:

- "counting on" and "counting back"
- counting by ones; "skip counting" by tens
- rounding to the nearest ten and/or fundred using concrete objects, including discrete counting objects (rounding to nearest ten) and Gase-ten materials (rounding to nearest fundred).

Learning Objectives:
1.) Round to the nearest ten by drawing pictures that represent concrete materials.
2.) Round to the nearest ten/hundred by drawing pictures that represent base-ten materials.
3.) Round to the nearest ten/fundred by drawing pictures using a number line.

Important Ideas for Implementing \mathcal{T} fis $\mathcal{T e}$ aching Plan:
1.) Only teach students to round to the nearest ten and/or fundred after students five demonstrated mastery of performing these skills using concrete objects (See the Concrete Level Instructional Plan).
2.) Teach rounding to the nearest ten or hundred at the drawing levelwithout a number line before you teach rounding numbers using concrete materials and a number line (See sections \mathcal{C} - \mathcal{E} of Concrete Level Instructional P(an). Students with le arning difficulties often are moved too quickly into abstract levelinstruction before they have a solid understanding at a concrete or drawing level. A rapid progression to the abstract level makes it very difficult for these students to master the skill because they do not have the "concrete" and "representational" foundation to make the "abstract" meaningful.

Instructional Phase 1: Initial $\mathcal{A c q u i s i t i o n ~ o f ~} \mathcal{S k i l l} /$ Concept $-\mathcal{T e}$ acher $\mathcal{D i r e c t e d}$ Instruction

Teach Skill/Concept within Authentic Context

Description:

- "Links" are made to the concrete experiences and the contexts used at the concrete level(See Build Me aningful Student Connections).
- A rationale for learning to round by drawing is provided: making decisions about buying items that come in groups of ten without having the items themselves to manipulate (See Build Meaningfulstudent Connections).
- Initial instruction for drawing is imbedded within the context of buying hamburgers for a cookout (See Explicit Teacher Modeling, "Round to the nearest ten 6ydrawing pictures that represent Gase-ten materials."

Build Meaningful Student Connections
${ }^{*}$ The following description is an example of how you might implement this instructional strategy for rounding to the nearest ten by drawing pictures (without number line). A similar process can be used for the other learning objectives in this plan.

Purpose: to assist students to build meaningfulconnections between what they know about rounding to the ne arest ten and/or fundred using concrete materials to rounding bydrawing pictures that represent concrete materials.

Learning Objective 1: Round to the nearest ten/hundred by drawing pictures that represent concrete materials.

Materials:
Teacker-

- aset of concrete objects (counting objects or base-ten materials) to reviewrounding to the nearest ten.
- visually display the le arning objective, "round to the ne arest ten by drawing pictures."

Description:
1.) 上 ink to students'prior knowledge of rounding to the ne arest ten or fundred using concrete materials.

For Example:

We've learned fow to round to the nearest ten/hundred using books, counters, and base-ten materials. (Quickly demonstrate this process while prompting students to "help"you as you demonstrate. *You might also consider inviting a student to demonstrate.
2.) I dentify the skill students will learn: "Round to the ne arest ten/hundred by drawing pictures."

For Example:
Today, we're going to learn how to round to the nearest ten/hundred bydrawing pictures instead of using concrete materials. (Display the written objective.) What are we going to learn today? (Point to the written statement and elicit the response, "round to the nearest ten/hundred by drawing pictures.") That's correct. We're going to learn how to round to the ne arest ten/hundred by drawing pictures. (Point to the written objective as you say this.)
3.) \underline{P} rovide rationale/meaning for rounding to the nearest ten/hundred bydrawing pictures.

For Example:

There will be times when you will need to round to the nearest ten/hundred when you don't fave actual objects to use. For example, youmay need to buy something like famburgers for a party which come in packs of ten. You will need to know how many packs of ten hamburgers to buy so that you have enough fiamburgers for everyone but not too many that you waste them. You also will not want to spend more money than you need to since buying too many packs of hamburgers will cost more than buying the right number of packs. Since you fave to decide how many packs to buy before you actually have them, youll ne ed to round to the nearest ten without using the actual hamburgers. We'll use this example to learn fow to round to the nearest ten by drawing pictures.

Provide Explicit Teacher Modeling
Purpose: to provide students a clear teacher of rounding to the nearest "ten" or "hundred" bydrawing pictures that represent concrete materials.

Learning Objective 1: Round to the nearest ten bydrawing pictures that represent concrete materials.

Materials:
Teacher -

- $\quad \mathcal{A}$ platform for displaying discrete counting objects and drawings that all students can see.
- Gase-ten materials (ten sticks and one cubes).
- Markers/chalkfor writing and drawing.
- Language cards that read eitfer "round to nearest ten" or "round to ne arest fundred."

Description:
A. Break down the skill of rounding to the nearest ten by drawing pictures that represent concrete materials.
1.) Identify and read the number to be rounded.
2.) Drawa two-digit number-e.g. "23"-two long verticallines ("tall skinny lines") are drawn for "twenty," and three horizontallines (short "fat"or "side-by-side" lines) are drawn for "three ones."
3.) Identify the place value to be rounded to (e.g. "ne arest ten").
4.) Revie w what "rounding"means.
5.) Identify and drawrepresentations for the "Lower" and "higher"tens.
6.) Compare drawings of "lower"and "higher"tens by counting on to "figher"ten by ones and counting back to lower ten by ones.
7.) Decide which ten the given number should be rounded to.
B. Explic itly Describe and Modelfow to round to the nearest ten by drawing pictures that represent concrete materials.

Key Ideas

1.) Explicitly Describe and Model the skill within a meaningful context. As you model the skill, imbed your instruction within a context such as: You and your students need to decide how many packs of ten hamburgers you need to buy for a cookout. You need a total of 24 fimburgers. You can buy single famburger patties, 6 ut buying more than five singles is more expensive than buying a pack of ten. How many packs of ten should be bought?
2.) Follow the same process that is descriged for rounding to the nearest fundred (Learning Objective 2) in the Representational Level Instructional Plan. The primary difference is that you will modelcounting on and counting back by ones to the nearest ten by drawing forizontallines to represent one cubes rather than drawing long verticallines and counting by tens.
4.) An alternative to this approach would be to replicate the concrete process described in the Concrete Instructional Plan where discrete objects are lined in a row and discrete objects are used to count on and count back to the nearest ten. To drawthis process, tallies, dots, circles, or squares can be drawn in a line or row to represent the two-digit number. Then you can count on and count back by ones by drawing talfies, dots, circles, or squares. The groups of drawings that represent the "counted on" set and the "counted back" set can be circled in order to compare them to determine the closest ten. This process is appropriate if your students are not ready to use base-ten materials or if you are only teaching rounding to tens using values that are represented by two-digit numbers.

Learning Objective 2: Round to the nearest fundred by drawing pictures that represent base-ten materials.

Materials:
Teacher -

- A platform for displaying base-ten materials and drawings that all students can see.
- Base-ten materials (fundred flats, tensticks, one cubes).
- Markers/chalkfor writing and drawing.
- Language card that reads "round to nearest fundred."

Description:
A. Breakdown the skill of rounding to the nearest fundred bydrawing pictures that represent base-ten materials.

1) Read the number given.
2) Draw the number (e.g. "123"-a square is drawnfor "one-fundred,"two vertical lines are drawn for "two tens," and one forizontal line is drawn for "three ones.").
3) Identify the place value to be rounded to.
4) Review what "rounding" means.
5) Identify and drawrepresentations for the "Lower" and "higher"tens or fundreds.
6) Compare drawings of "lower" and "higher"tens or hundreds by counting on to "figher"ten or fundred and counting back to lower ten or fundred.
7) Decide which ten or fundred number should be rounded to.

B. Explicitly describe and modelfow to round to the nearest fundred by drawing pictures that represent

 base-ten materials.1.) Read the number given and represent it with base-ten materials.

- think aloud
- cue digit and concrete materials with finger
- use "place value" language

For Example:

Here is a number. I need to read it first. (Read the number - "two fundred thirty-two.") I know how to represent this number using base-ten materials. How could I represent this number using fundred flats, ten sticks, and one cubes? (Elic it the appropriate response.) Great. I can represent this number with base-ten materials with two hundred flats (lay down two fundred flats side by side), three ten sticks (lay down three ten sticks), and two one cubes (lay down two one cubes). I have "two fundred" (Point to and count aloud the two fundred flats, "one fundred, two fundred."), three tens, or "thirty" (Point to and count aloud the three tens sticks, "ten, twenty, thirty."), and two ones, or "two" (Point to and count aloud the two one cubes, "one, two."). Have I represented "two-fundred thirty-two accurately? (Elicit the response, "yes.") Yes, I have "two Gundred" "thirty" "two" (Point to each set of manipulatives as you say what they represent.)

232

2.) Draw the number.

- drawfindreds place using squares
- point to eacf digit and corresponding concrete materials as you draw
- drawdirectly beneatf concrete materials
- think aloud
- prompt student thinking

For Example:

Because we don't always have concrete materials, I want to showyou howyou candraw pictures to represent numbers like this one. I candrawsimple pictures for each of the concrete materials I have here that represent "two-fundred thirty-two." I ll start with the fundreds place (Point to "2" in the number "232.") I have two hundred flats that represent "two fundred." I candraw a square to represent a fundred flat. (Draw one square directly below the first fundred flat.)

232

This square represents this hundred flat (Point to the drawing of the square and then point to the first hundred flat.) I candraw the second fundred flat the same way. (Repeat the same process you use for drawing the first fundred flat.) I now have draw two fundred flats. What number does the se two drawings represent? (Elicit the response, "two fundred.") That's right, these two squares that I have drawn mean "two fundred." Each square represents one fundred flat and two fundred flats equal "two Gundred."

- draw the tens place using vertical lines
- point to each digit and corresponding concrete materials as you draw
- drawdirectly beneath concrete materials
- think aloud
- prompt student thinking

For Example:

\mathcal{N} ow I ll draw the tens place. (Point to the " 3 " in " 232 .") I have represented "thirty" with three ten sticks (Point to the three ten sticks.) Each of my ten sticks represents "ten." There are three tens, or "thirty." (Point to each ten stick and count aloud, "ten, twenty, thirty.") I candraw "thirty" by drawing one long verticalline (tall "skinny"lines) foreach "ten." Ill do that now. (Draw one long verticalline beneath each tenstick.)

232

\mathcal{H} ow many tens have I drawn? (Elicit the response, "three.") Yes. And howmuchare three "tens?" (Elicit the response, "thirty.") Yes, the three tens I have drawnequal thirty. Each verticalline (tall "skinny" (ine) represents "ten," and my three vertical lines (tall "skinny" lines) equal "thirty."

- draw the ones place using forizontal lines
- point to each digit and corresponding concrete materials as you draw
- drawdirectly beneath concrete materials
- think aloud
- prompt student thinking

For Example:
\mathcal{N} ow I ll draw the ones place. (Point to the "2" in "232.") I have represented "two" with two one cubes (Point to the two one cubes.) Each cube represents "one." There are two ones, or "two." (Point to each one cube and count aloud, "one, two.") I can draw" "two" by drawing one short horizontal line (short lines
that go "side-to-side") for each"one." I th do that now. (Draw two short horizontal lines beneatheach other and beneath the two one cubes.)

232

$\mathcal{H o w m a n y ~ o n e s ~ h a v e ~ I ~ d r a w n ? ~ (E l i c ~ i t ~ t h e ~ r e s p o n s e , ~ " t w o . ") ~ Y e s . ~ A n d ~ h o w ~ m u c h ~ a r e ~ t w o ~ " o n e s ? " ~ (E l i c ~ i t ~ t h e ~}$ response, "two.") Yes, the two ones I have drawnequal "two." Each horizontal(sfort side to side) line represents "one" and I have drawn two forizontal(short "side to side") (ines." Nowthat I have represented my fundred flats, ten sticks, and one cubes with drawings do I still need to use the concrete materials? (Elicit the response, "no.") Why" (Elic it the response, "because the drawings mean the same thing.") Yes, my drawings represent the same value that my concrete materials do, so I don't need the concrete materials. (Remove the base-ten materials.)
3) Hold up the "rounding"card that identifies the place value you will round to (e.g. "ne arest ten" or "ne arest hundred").

- point to word
- say what rounding to
- students repeat

For Example:

\mathcal{N} ow that I fave drawn my number, its time to round it to the ne arest ten or ne arest fundred. I fiave some cards here. Eacficard says what place value I need to round my number to. Let's see what the first card says. (Dis play the card that says "nearest fundred.") What place value do we ne ed to round two-fundred thirty -two to? (Elic it the response, "to the nearest fundred.") Yes, the card reads "nearest fundred." (point to the words as you read the card.)
4.) Revie w what "rounding" means.

- prompt student thinking

For Example:

I have to round to the nearest fundred. What does "rounding"mean? (Elicit the response, to find the number it is closer to.) Yes. When we "round" numbers, we find which place value, in this case "fundred," our number is to.
5.) Drawrepresentations for the "Lesser" and "greater" fundreds place.

- prompt student thinking
- relate to concrete experiences
- write lesser and greater fundreds belowcurrent drawing
- drawings made belowlesser and greater fundred.

For Example:
We ve already rounded with concrete materials. How did we use concrete materials to round? (Elic it the response, "represent the lower and higher numbers for "fundreds" with concrete materials and thencompare them.") Yes, we represented the lower and figfier number for fundreds and then compared our concrete materials to see whicf "hundred"our given number was closest to. We can do the same thing by drawing. The only difference is that I will use drawings instead of concrete objects. We already know fow to represent "fundreds" by drawing squares. We know that we can represents "tens" with long verticallines (tall skinny (ines). We also know we candraw "ones" by drawing short forizontal lines ("sfort side to side lines").

To round "two-fundred thirty-two" to the nearest "fundred"I first need to determine fowmany fundreds are in my number. How many fundreds are in the number "two-fundred thirty-two?" (Point to the "2"in " 232 "and the drawings that represent "two-fundred" and elicit the response, "two fundreds.") Yes, there are two fundreds in "two-fundred thirty-two." (Cue students by pointing to the fundred flats and drawings as needed.) I Know that two-fundred thirty-two is greater than two-fundred but less than three fundred, so I ither round "two-hundred thirty-two" to two-hundred or to three-hundred. (*If the concepts of "greater than" and "Cess than"are difficult concepts for your students, you also can use a number line to sfow that " 232 "comes after" 200 " and before " 300 ." This may be a usefulcue to use in addition to using the concepts of "greater than" and "Less than.") I'tlwrite the number "two-hundred" to the side of and belowmy drawings for "twofundred thirty-two." I Ul write "three-fundred" to the other side of and below my drawings for "two-fundred thirty-two." (Write "200" and " 300 "to the sides of and belowyour drawings.)

When we rounded using only Gase ten materials, we represented our fundreds with fundred flats. How many hundred flats equal "two-fundred?" (Elic it the response, "two.") And how can we draw two "hundreds?" (Elicit the response, "draw two squares.") Yes, I can represent "two-fundred" by drawing two squares because my squares represent fundred flats. I'll draw two "hundreds" now. (Draw two squares under "200.")

232

200
300

How can I draw "three-fundred?" (Point to "300" and elicit the response, "draw three squares.") Yes, I can represent "three-fundred" by drawing three squares. Each square represents a fundred. (Draw three squares Geneath"300.")

232

200

6.) Compare each fundreds place "to be rounded to" to the given number.

- count on to the higher fiundred place.
- relate to concrete experiences
- count on from " 230 "
- drawvertical lines as you count on
- say total "prompt student thinking"

For Example:

Since we know we need to round to the nearest fundred, we can compare our drawings to see whether "twohundred thirty-two" is closer to "two-hundred" or "three-fundred." Our drawings can help us do that. We learned that when we compared concrete materials to round to the ne arest fundred, it was helpful to count on by tens starting with the tens place of our number. For "two-hundred thirty-two," we would start with "thirty" (Point to the " 3 " in "232.") and count on by ten using ten sticks. We can do the same thing with drawings by drawing a long verticalline (tall skinny line) as we count on by tens. Let's do that now. (Count on from thirty while drawing long verticallines below the drawings for " 232. .) \mathcal{H} ow many tens are we from "three-fundred?" (Elicit the response, "seventens.") Good, and what is another way to say "seven tens?") (Elic it the response, "seventy.") Yes, "three fundred" is about seventygreater than "two-fundred thirty-two." Is "three-fundred"exactly seventy away from "two-hundred thirty-two? (Elicit the response, "no.") Why? (Elic it the response, "because of the two ones in two-fundred thirty-two.") Great thinking guys! Because our number is "two-fundred thirty-two" and not "two-fundred thirty," our number is not exactly seventy from "three-fundred."

232

200

- count 6ack to "lower fundred."
- relate to concrete experiences
- count 6ackfrom"230"
- drawvertical lines as count back
- say total
- prompt student thinking

For Example:

\mathcal{N} Now we need to count-back to "two-hundred" to see howfar away two-fundred thirty-two" is from "two-
fundred." (*Follow the same procedure for counting back as you did for counting on, drawing long vertical lines as you count back by tens.)

232

$$
200
$$

300

- compare the drawings that represent "counting on" and "counting back."
- prompt student thinking
- point to each group of drawings

For Example:

\mathcal{N} ow that we have counted on to three-hundred and counted back to two-fundred, what do we know? (Elic it the response, "two-fundred thirty-two is closer to two-hundred than it is to three-hundred.") Yes. Howdo youknow that? (Elicit the response, "because two-fundred thirty-two is about three tens/thirty away from two-fundred and it is about seventens/seventy away from three-fundred.") Excellent thinking guys! By drawing pictures, we know that "two-fundred thirty-two" (Point to "232.") is about three tens or "thirty"away from "two-fundred" (Point to the group of two vertical lines and then point to "200."). We know "two-fundred thirty-two" (Point to "232.") is about seven tens or "seventy" away from"three-fundred (Point to the group of sevenvertical lines and then point to " 300 .")
7.) Decide which fundred the number should be rounded to.

- prompt student thinking - "why?"

For Example:

So, which "hundred" should "two-hundred thirty-two" be rounded? (Elicit the response, "two-hundred.") Yes, "two hundred thirty-two" should be rounded to "two-fundred." Why? (Elicit the response, "because it is closer to two-fundred than it is to three-fundred.") That's right. By drawing pictures, we know that "twohundred thirty-two is closer to "two-hundred" than "three-hundred," therefore we should round "two-hundred thirty-two" to two-fundred. (Circle "200.")
8.) Repeat steps $1-6$ with at least three more examples for both rounding to "tens" and rounding to "hundreds."

Learning Objective 3: Round to the nearest ten and fundred by drawing pictures using a number line.

Materials:
Teacher -

- number lines representing fundreds (e.g. "100" to "200;""400"to"500;" "800 to "900"). Number lines should represent ten multiples. Color-coding the "tens" digit in the ten multiples to the color of the ten sticks can be a helpfulcue for students with visual processing problems or attention difficulties. *The number lines should be measured so they are the same length as ten"ten sticks laid side-to-side. Each ten multiple should be written so that it occurs at the beginning/end of the ten sticks.

For Example:

- Gase-ten materials (ten sticks and one cubes).
- a visual platform from which to display concrete objects and drawso all students cancle arly see them $\left({ }^{*}\right.$ there should be enough room to line concrete objects side-by-side in the form of a line in multiples of ten.).
- a language card with the word "rounding" written.
A. Breakdown the skill of rounding to the ne arest ten and fundred by drawing pictures using a number line.
1.) Review the number line.
2.) Write number to be rounded above number line in the position the number would occur on number line. 3.) Count out set of ten sticks and one cubes representing number and thendraw pictures to replace the concrete objects.

For Example:

4.) Remove concrete materials.
5.) Identify whether you are rounding to the ne arest ten or to the nearest fundred.
6.) "Count on" to the greater "ten" or "fundred" by drawing.

Example for rounding to "tens:"

For Example for rounding to "hundreds:"

7.) Say how many ones or tens were "counted on;" write number above the set of counted ondrawings.
8.) "Count back to the lesser "ten" or "fundred" by drawing.

Example for rounding to "tens:"

For Example for rounding to "fundreds:"
*Count back using "tens" already drawn or bydrawing "tens" above existing drawings.

9.) Say how many ones or tens were "counted back;" write number above the set of "counted back" drawings.
10.) Compare the values of the "count on" and "count 6ack"groups of drawings.
11.) Determine which group of drawings represents less.
12.) S ay and then circle which ten or fundred the originalgroup of objects is closer to and why.
13.) Review the term "rounding."
B. Explicitly Describe and Modelhow to round to the ne arest ten and fundred by drawing pictures using a number line.
*Follow the same process described for rounding to the ne arest ten and fundred using base-ten materials and a number line (Learning Objectives 3, 4, \& 5 of Concrete Level Instructional Plan) following the teaching steps outlined for this objective.. Emphasize to students that the drawing process for rounding to tens and fundreds using a number line is the similar to when they used concrete materials except that they can use drawings to represent the concrete materials they used before.
1.) Review the number line (Prompt students to describe what it represents - e.g.number values, what value it starts with/ends with, does it increase by ones or tens, relevant color-coding. Explicitly point these characteristics out as needed.)
2.) Write the number to be rounded above the number line in the position the number would occur on the number line.
3.) Count out a set of ten sticks and one cubes that represent the number and then model how to draw pictures to replace the concrete objects (e.g. the long verticallines used to represent tens in Learning Objectives 1 er can be drawn forizontally over the number line to replicate a "ten stick" laying on its side; dots, circles, squares, or tallies can be drawn for one cubes.)

For Example:
"162"
\qquad

3.) Remove concrete materials.
3.) Identify whether you are rounding to the nearest ten or to the nearest fundred.
4.) "Count on" to the greater "ten" or "hundred" by drawing. Ulse the same drawings for "ones" and "tens" as you did for step number three. Place the drawings you "count on"slightly above the original row of drawings so they can be differentiated from the original set.

Example for rounding to "tens:"

For Example for rounding to "hundreds:"

6.) Say how many ones or tens were "counted on" to reach the greater ten or fundred and write the value in number form above the set of "counted on" drawings.
7.) "Count back to the lesser "ten" or "Kundred" by drawing (counting back by ones) or counting existing drawings (counting back by tens).

Example for rounding to "tens:"

For Example for rounding to "fundreds:"

* Count backusing "tens" already draw or by drawing "tens" above existing drawings.

9.) Say how many ones or tens were "counted back" and write the value in number form above the set of "counted back" drawings.
10.) Compare the values of the "count on"group of drawings and the "count back"group of drawings (*ircling the two sets of drawing can be a he (pfulcue).
11.) Determine which group of drawings represents less.
12.) S ay and then circle which ten or fundred the originalgroup of objects is closer to and why.
13.) Review the term "rounding." (Display and point to "rounding" (anguage card.)

Purpose:: to provide students the opportunity to build their initial understanding of fow to round to the ne arest ten/hundred by drawing with or without the use of a number line, and to provide you the opportunity to evaluate your students'levelof understanding after you have initially modeled this skill.

Materials:
${ }^{*}$ De pendent on the skill you are Scaffolding Instruction for (See the materials listed for the specific skill you want to scaffold under Explicit Teacher Modeling).

Description:
 scaffolding instruction at the concrete levelof instruction (See the description of Scaffolding Instruction for, "rounding to the nearest fundred using base ten materials and a number line," in the Concrete Level Instructional Plan.). The steps used during Explicit Teacher Modeling should be used as structure for scaffolding your instruction.
A. Scaffold instruction using a figh level of teacher direction/support (*Dependent on the needs of your students, you may want to continue to associate concrete materials with drawings at this levelas described under Explicit Teacher Modeling.). .). *Move to the next phase of scaffolding only when students demonstrate understanding and ability to respond accurately to your prompts.
B. Scaffold instruction using a medium levelof teacher direction/support (*If you associated concrete materials with drawings while scaffolding using a figh levelof teacher direction/support, thendo not include concrete materials during this phase of scaffolding). *Move to the next phase of scaffolding only when students demonstrate understanding and ability to respond accurately to your prompts.
C. Scaffold instruction using a low levelof te acher direction/support (${ }^{*}$ Students should actually draw as you prompt during this phase of Scaffolding Instruction.). *Move students to independent practice of the skill only after they demonstrate the ability to perform the skill with limited prompting from you.

Instructional Phase 2: Facilitate Acquisition to Mastery - Student Practice

1. Receptive/Recognition Level

Purpose: to provide students multiple opportunities to choose the appropriate "ten" or "hundred"a number should be rounded to given a drawing of the number to be rounded and severalchoices.

Learning Objective 3: Round to the nearest ten/hundred bydrawing using a number line.

Instructional Game
Materials:
Teacher -

- generic game boards (*Game boards can be made by using manilafolders or square pieces of tag-board and configuring multiple spaces (i.e. 15-30 spaces will provide multiple practice opportunities) that students can move game pieces on. A rectangle can be drawn on the game-board to represent where the response cards are placed. At the beginning of the year, students can be taught how to make game boards and then these game-boards can be used throughout the year!) Game-boards can be as colorful/creative or as simple in nature as appropriate given your time and your student's ability level.
- dice or spinners
- multiple sets of cards that have: Front - 1.) a number represented on a simple number line with drawings that represent the number and drawings used to "count on" and "count back" to the nearest ten or hundred; 2.) Gelow the number line and drawings, severalchoices for which "ten" or "hundred" the
 these cards, you can make one set of twenty using plain paper so that the number lines with drawings and choices are a size that canfit on one side of a 4×5 note-card. Number eachexample \#1- \# 20 in the top right corner so that each card has the number appear at the top right corner. Then you can make multiple copies of the one set, cut them out, paste them on note-cards, and laminate the note-cards Students can assist in pasting the drawings/choices \& answers on note-cards!
- a copy of the original set of problems so the teacher cancheckindividual student response sheets.

Students.

- each smallgroup have a game-board, die or spinner, a set of cards.
- asheet of paper to record which number example they respond to and whether they ans wered it correctly or not.

Description:
Activity:

Students can practice using a "game board" format where cfildren can play in small groups using generic game boards (see description under "Materials."). Students roll a die or spin a spinner. They pull a card from a stack of cards and make a choice. The card is thenturned over to reveal the correct response. Students move the appropriate number of spaces on the ir game board if the ir answer is correct. Each card fas drawings that represent the rounding process for a variety of numerical values on the front side. Also included on the front side are three to four choices for which"ten" or "hundred" the number should be rounded to. On the back of the card is written the correctresponse. Students play until someone reaches the "winning" space (the last space on the game board). Students start a ne wgame. S tudents continue to play until the teacher signals that it is time to end. When the answer is revealed for each response, the student who answered the problem writes the number of the problem (written at top right corner of card) and places a checkmark if theygot it correct. They write a circle if they did not get it correct.

Instructional Game S teps:
1.) Introduce game.
2.) Distribute materials.
3.) Provide directions for game, what you will do, what students will do, and reinforce any be favioral expectations for the game.
4.) Provide time for students to ask questions.
5.) Modelhow to respond to the card prompts.
6.) Provide time for students to askquestions about how to respond.
7.) Modelhow students cankeeptrackof the ir responses.
8.) Play one practice round so students can apply what you have modeled. Provide specific feedback/answer any additional questions as needed.
9.) Monitor students as they practice by circulating the room, providing ample amounts of positive reinforcement as students play, providing specific corrective feedback/re-modeling skill as needed.
11.) Play game .
12.) Encourage students to review their individualresponse sheets, write the totalnumber of "correct" responses under the "C" (Correct) column and do the same for the " \mathcal{H} " ($\mathcal{H} e$ lp) column.
13.) Review individual student response sheets to determine level of understanding/proficiency and to determine whether additional modeling from you.

2. Expressive Level

Purpose: to provide students multiple opportunities to round to the nearest ten or fundred by drawing pictures on a number line.

Learning Objective 3: Round to the nearest ten/fundred by drawing using a number line.

Materials:
Teacher -

- sets of note-cards with appropriate prompts on the front and the answer on the back (e.g. on the front of the card appears the number to be rounded and a prompt to round to the nearest ten or nearest Gundred by drawing. On the back is a drawing of the number line, a drawing of the number to be rounded, and drawings that represent the "count on"group of drawings and the "count back"group of drawings. The "ten" or "hundred" the number is rounded to is circled. *As for the cards described under the Receptive/Recognition description, you may want to make a set of drawings (that are the size of a 4×5 note-card) on several pieces of copy paper and then make multiple copies. These drawings can them be pasted on note-cards and laminated. Advanced students can assist you to make drawings.
- create sets of number lines that represent ten multiples (for rounding to the nearest ten) or fundred multiples (for rounding to the ne arest fundred) on plain copy paper. Draw a line slightly above and to the left of each number line to provide a space for the student to write the number they are rounding. These "master copies" can then be copied multiple times to provide learning sheets for students to use. Copies can be placed in folders that are labeled "number lines-tens" and "number lines - fiundreds." Students can pull a le arning sheet from one or both folders dependent on which skill they are working on.

Students.

- Learning sheets that have the appropriate set of number lines on them.
- aset of note-cards (see description above).
- pencilfor drawing and writing.

Description:

Activity:
S tudents respond to prompts written on the front of note-cards. Each prompt shows a number to be rounded and what the number sfould be rounded to, the "nearest ten" or "nearest fundred." The student uses number lines provided on a learning sheet to draw the number on the number line and then drawthe "count on"group and the "count back"group. Before drawing, students write the number they are rounding in the space provided next to each number line. Then, the student circles the ten or fundred the number should be rounded to. The student checks the ir answer by turning the card over where the correct drawing appears and the nearest ten or fundred is circled. Students mark whether the ir answer was correct or incorrect.

Self-correcting Materials Steps:
1.) Introduce self-correction material.
2.) Distribute materials.
3.) Provide directions for self-correcting material, what you will do, what students will do, and reinforce any

Gefiavioral expectations for the activity.
4.) Provide time for students to askquestions.
5.) Modelresponding/performing skill within context of the self-correcting material.
6.) Modelfowstudents cankeep check their responses.
7.) Have students practice one time so they can apply what you have modeled. Provide specific
feedback/answer any additional questions as needed.
8.) Monitor students as they work.
9.) Provide ample amounts of positive reinforcement as students play.
10.) Provide specific corrective feedback/re-modelskill as needed.
11.) Encourage students to review their individuallearning sheets, write the totalnumber of "correct"
responses under the " C " (Correct) column and do the same for the " \mathcal{H} " ($\mathcal{H e l p}$) column.
13.) Review individual student performance record she ets.

Instructional Phase 3: Evaluation of Student Learning/Performance (Initial Acquisition through
Mastery/Maintenance)

Continuously Monitor © Chart Student Performance
Purpose: to provide you with continuous data for evaluating student learning and whe ther your instruction is effective. It also provides students a visual way to "see"their learning.

Materials:
Teacher -

- appropriate prompts if they will be oral prompts
- appropriate visualcues when prompting orally

Student -

- appropriate response sfieet/curriculum slice/probe
- grapficfiart

Description:

Ste ps for Conducting Continuous Monitoring and Charting of \mathcal{S} tudent Performance:
1.) Choose whether students should be evaluated at the receptive/recognition levelor the expressive level.
2.) Choose an appropriate criteria to indicate mastery.
3.) Provide appropriate number of prompts in an appropriate format (receptive/recognition or expressive) so students can respond.

- Based on the skill, your students'learning characteristics, and your preference, the curriculum slice or probe could be written in nature (e.g. a sheet with appropriate prompts; index cards with appropriate prompts), or oral in nature with visualcues (e.g. teacher shows drawings and choices on overfiead and then prompts students to say which ten or fundred the number should be rounded to, or a combination of written curriculum slices/probes and oral prompts with visualcues (e.g. teacher shows drawings and choices on overfead and then prompts students to write which ten or fundred the number should be rounded to on a sheet of papered numbered 1-8).
4.) Distribute to students the curriculum slice/probe/response sheet/.
5.) Give directions.
6.) Conduct evaluation.
7.) Count corrects and incorrects/mistakes (you and/or students can do this depending on the type of curriculum slice/probe used - see step \#3).
8.) You and/or students plot their scores on a suitable graph/chart. A goal line that represents the proficiency (for representationallevelskills, this should be \%100-8-10 out of 8-10 corrects) should be visible on each students'graph/chart).
9.) Discuss with children their progress as it relates to the goal line and the ir previous performance. Prompt them to self-evaluate.
10.) Evaluate whether student(s) is ready to move to the next level of understanding or fas mastered the skill at the abstract level using the following guide:

Representational Level: demonstrates \% 100 accuracy of (given $8-10$ response tasks) over two to three consecutive days.
11.) Determine whether you need to alter or modify your instruction based on student performance.

Instructional Phase 4: Maintenance - Periodic Practice to Maintain Student Mastery of Skills

1. Center Time

Purpose: to provide students periodic opportunities to maintain mastery of a skill previously learned and mastered.

Materials:
Teacher-(Same as those listed under 6oth student practice activities in Instructional Phase 3-Facilitate $\mathfrak{A c q u i s i t i o n ~ t o ~ M a s t e r y ~ - ~ S t u d e n t ~ P r a c t i c e) ~}$

Students - (Same as those listed under 6oth student practice activities in Instructional Phase 3-Facilitate Acquisition to Mastery -Student Practice)

Description:
During "Center Time"devote one or more centers to the activities describedin Instructional Phase 3 - Facilitate Acquisition to $\mathcal{M a s t e r y}-\mathcal{S}$ tudent $\operatorname{Practice)}$
2. Problem of the Day

Purpose: to provide students periodic opportunities to maintain mastery of a sill previously le arned and mastered.

Materials:
Teacher -

- visual platform to displaydrawings depicting rounding a given number to the nearest ten or fundred (e.g. chalkboard/dry-erase board, overfead projector)
- one or more drawings of rounding a number to the ne arest ten or fundred

Students.

- pencil and paper for writing.

Description:
S tudents respond to the "Problem of the Day" when they firstarrive or at the beginning of math time.

Display drawings that represent rounding a number to the nearest ten or fundred. A variety of prompts or questions could be written that students respond to:

What ten/hundred should the number be rounded to?
Why?
How many to reach the figher ten/fundred?
How many to reach the lesser ten/hundred?
S tudents can respond in writing or they can respond orally to the teacher on an individual bas is (if writing is a difficult process for them). The teacher can take a minute or two after students have had the opportunity to respond to discuss the "Problem" and elicit student ide as and provide corrective feedback and modeling.

